
Luttinger Liquid— 
Emergent Phenomenon 
in 1D Electron System

Qipan Wang

1



Contents

Landau Fermi Liquid:  
Basic Idea and Failure

1

Tomonaga-Luttinger Model: 
Bosonization and Spin-Charge Separation

2

Experiments: 
Predictions and Verifications

3

Further Discussions: 
Stability and Open Questions

4

2



References

1. Yayu, Wang. (2019). Lectures of Selected Topics in 
Experimental Condensed Matter Physics. 
2. Voit, J. . (2000). A brief introduction to luttinger liquids. AIP 
Conference Proceedings. 
3. Gerald D. Mahan. (1981). Many-particle physics. physics of 
solids and liquids. American Scientist, 69(6), 668. 
4. Kim, B. J. , Koh, H. , Rotenberg, E. , Oh, S. J. , Eisaki, H. , & 
Motoyama, N. , et al. (2006). Distinct spinon and holon dispersions 
in photoemission spectral functions from one-dimensional srcuo2. 
NATURE PHYSICS, 2(6), 397-401. 
5. Bockrath, M. , Cobden, D. H. , Lu, J. , Rinzler, A. G. , & 
Mceuen, P. L. . (1999). Luttinger liquid behavior in carbon 
nanotubes. Nature, 397(6720), 598-601. 
6. Haldane, F. D. M. . (2000). ‘luttinger liquid theory’ of one-
dimensional quantum fluids i: properties of the luttinger model and 
their extension to the general 1d interacting spinless fermi gas. 
Journal of Physics C Solid State Physics, 14(19), 2585.

3
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Basic Idea and Failure

Part One
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Landau Fermi Liquid
Free Electron Gas model 

5

Basic Idea of Drude Model: 

Only consider kinetic energy: , ignoring 

all interactions (except instantaneous collisions) 

Electrons were treated as independent classical particles 

Electrons follow Maxwell-Boltzmann distribution 

Successes: 

Explanation of electrical conductivity (ac conductivity of 

metals) and thermal conductivity 

Quantitative explanation of the Wiedemann-Franz law 

Further Development: Sommerfeld Model 

Electrons are plane waves traveling in free space  

Electrons follow Fermi-Dirac Distribution

H = ∑i p2
i /2m

Fig.1.(A).Electrons 
form ideal gas with 
charge -e. (B).Fermi 
Surface of 2DEG (2 
dimension electron 
gas). (C).Ground 
State of a one  
dimensional system.
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Physical properties of metals suggest that electrons behave like 

independent particles, even though the Coulomb interaction in 

most metals are much larger than the electron kinetic energy. 

If the interaction between electrons is not too strong, then a 

non-interacting quasi-particle (qp, named by Landau, has the 

same charge, spin and momentum as non-interacting 

electron) picture is still a good first approximation. 

Its behavior is qualitatively the same as non-interacting 

electrons. Energy levels differ from non-interacting electrons by 

interactions, with an effective mass  introduced, causing 

quantitative change in some properties. Low energy excitations 

can be accounted for by the Landau interaction function .

m* ≠ me

f

Interaction

Interaction

Fig.2.(Up).Non-interacting electron gas 
(Left) to qps (Right).  (Down).Low energy 
excitation of free electrons and qps.

Landau Fermi Liquid
Motivation of Landau Fermi Liquid



Theoretical Basis of Landau FL
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Adiabatic continuity (proposed by Anderson in 1981): 

Labels associated with eigenstates are more robust against 

perturbations than the eigenstates themselves. 

A low lying excited state of an interacting Fermion system can 

be constructed by:  

1. preparing a low lying excited state of non-interacting ideal 

Fermi-liquid (e.g., adding an electron/hole above/below the 

Fermi level);  

2. switching on the interaction suitably slowly: it should be 

switched on before the state is totally damped. It is possible 

because an electron/hole near the Fermi surface damps very 

slowly.

Fig.3. A simple illustration of adiabatic 
continuity. By slowly turning on a weak 
quadratic potential, the new eigenstates 
change but the number of nodes still 
remains a good label of the new 
eigenstates. 

Landau Fermi Liquid



Failure in 1D system
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In 1D, Fermi surface is two dots: . For q → 0, the range of 

allowed low-energy excitations shrinks to a linear spectrum 

, independent of . Consequently, an 

1D electron system violates the one-to-one correspondence 

between low-energy excitations and electrons in Landau FL!

±kF

ℏω = εk+q − εk ≈ ℏvF ⋅ q k

This can be explained in real space: electrons can not avoid each other when they move in 1D so 

they have to push each other when they move along a 1D chain. Their motions are highly correlated, 

even when electron interaction is weak. 

Electron-electron interactions are usually very strong in 1D due to inefficient screening. This 

further enhances the correlations between electrons. 

In conclusion, no individual motion/excitation is possible in 1D, the motion is always collective. 

Fig.4. Fermi Surface of 1D system.

Landau Fermi Liquid
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Tomonaga Model
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Tomonaga model (Tomonaga, 1950) discusses a one-dimensional electron gas, described by 

Hamiltonian: , where . 

The system has length . Linear dispersion relation holds near Fermi Surface and  is the Fermi 

velocity.  and  are creation and annihilation operator for electron.  is the electron density 

operator. Spin index .  is electron-electron interaction term. It will not be  which is 

dimensionally incorrect in 1D. Dimensional analysis suggests the form , where n is 

any exponent. 

The important physics is the recognition that the excitations of the electron gas are approximate 

bosons, although the elementary particles— electrons— are fermions. The Tomonaga model 

assumes that the excitations are exactly bosons, which is the important approximation. 

H = vF ∑ks
|k |a†

ksaks +
1

2L ∑k≠0
Vkϱ(k)ϱ(−k) ϱ(k) = ∑p,s

a†
p−k/2,sap+k/2,s

L vF

a† a ϱ(k)

s = ± 1 Vk 4πe2/k2

Vk ∝ e2 (kF /k)n

Tomonaga-Luttinger Model



Bosonization
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The basic step in the Tomonaga model is to divide the density operator into two terms:  

   , then . 

Tomonaga assumes that these density operators obey the exact commutation relations: 

  ,    and  . 

The commutation relations are not exact, since the commutators give operators. However, when we 

take the expectation value of the exact commutation relations in the ground state of the free-

particle system, we do get these results. 

Then density operators are expressed in terms of creation and destruction operators for bosons:

      ,  

where  is always positive and .

ϱ1(k) = ∑s,p>0
a†

p−k/2,sap+k/2,s ϱ2(k) = ∑s,p<0
a†

p−k/2,sap+k/2,s ϱ(k) = ϱ1(k) + ϱ2(k)

[ϱ1(k), ϱ1 (−k′ )] = δkk′ 
Lk
π [ϱ2(k), ϱ2 (−k′ )] = − δkk′ 

Lk
π [ϱ1(k), ϱ2 (−k′ )] = 0

ϱ1(k) = bk (kL /π)1/2 ϱ1(−k) = b†
k (kL /π)1/2 ϱ2(k) = b†

−k (kL /π)1/2 ϱ2(−k) = b−k (kL /π)1/2

k [bk, b†
k′ ] = δkk′ 

Tomonaga-Luttinger Model



Bosonization
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The electron-electron interaction term will be recast into an interaction between the boson 

excitations: , where . 

It's not immediately obvious how to express the kinetic term in terms of the new boson operators. 

When faced with this predicament, we instead examine the approximate commutation relations:

, where  and . 

The one-dimensional electron gas has now been recast into the boson Hamiltonian with several 

key approximations on commutation relations: . 

This form is a description of the electron gas as due to boson excitations and is exactly solvable.

1
2L ∑k

Vkϱ(k)ϱ(−k) = ∑k
V̄k (bk + b†

−k) (b†
k + b−k) V̄k =

|k |Vk

2π

[bk, H0] = kvFbk ≡ ωkbk H0 = vF ∑ks
|k |a†

ksaks ωk = vF |k |

H = ∑k
ωkb†

k bk + ∑k
V̄k (bk + b†

−k) (b†
k + b−k)

Tomonaga-Luttinger Model



Excitation Spectrum of Density Oscillations 
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The Hamiltonian  can be constructed by changing operators: 

& , where . 

So far the form of the interaction potential  hasn't been specified. In fact, physicists often choose 

a variety of forms for this interaction in order to suit their problem. In the electron gas, there are 

two different types of excitations. 

One excitation is described by . This leads to the plasma modes at long 

wavelength with plasma frequency ( , here ): . 

Another is the electron-hole excitations at short wavelength, which is probably best described 

by the choice . The energy spectrum is just altered by having  the Fermi 

velocity increased.

H = ∑k
Ek (α†

k αk +
1
2 )

bk + b†
−k = (ωk /Ek)1/2 (αk + α†

−k) b†
k − b−k = (Ek /ωk)1/2 (α+

k − α−k) Ek = (ω2
k + 4ωkV̄k)

Vk

Vk = (2/3)(e2k2
F /k2)

ωp = 4πe2n /m n = k3
F /3π2 Ek = (k2v2

F + ω2
p)

Vk ∝ e2 = V0 (V0 > 0)

Tomonaga-Luttinger Model



Spin-Charge Separation
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Overhauser (1965) has shown that the excitation spectrum is completely described by the sum of 

these two types of excitations: density oscillations and spin waves. The spin waves are described 

by the operators:     , 

where spin index  represents .  

Define , then we can see that  and .

σ(k) = σ1(k) + σ2(k) σ1(k) = ∑s,p>0
sa†

p−k/2,sap+k/2,s σ2(k) = ∑s,p<0
sa†

p−k/2,sap+k/2,s

s = ± 1 ↑ , ↓

ϱs = ∑p
a†

p−k/2,sap+k/2,s ϱ = ϱ↑ + ϱ↓ σ = ϱ↑ − ϱ↓

Fig.5. Illustration of spin up and spin down 
charge densities. 

In the same spirit which was used to derive the 

approximate commutation relations for the density 

operators, we deduce a similar approximate set of 

commutators:  [σi(k), σj (−k′ )] = δijδkk′ kL /π

Tomonaga-Luttinger Model



Spin-Charge Separation
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The spin operators commute with the density operators when the two spin states are occupied 

with equal probability— so that the system is not magnetic, and so describe an independent set 

of excitations, otherwise the excitation spectrum is quite different. 

These excitations can be represented by a new set of creation and destruction operators, which for 

 are:       , where 

 and . 

The commutator with the kinetic energy term can be evaluated in the same approximation, thus the 

spin wave part of the Hamiltonian is: . 

The total Hamiltonian  for the excitation spectra of the one-dimensional electron gas then is: 

, having the density and spin wave excitations decoupled. 

k > 0 σ1(k) = ck kL /π σ1(−k) = c†
k kL /π σ2(k) = c†

−k kL /π σ2(−k) = c−k kL /π

[ck, c†
k′ ] = δkk′ [ck, b†

k′ ] = [ck, bk′ ] = [c†
k , b†

k′ ] = 0

Hsw = ∑k
[σ1(−k)σ1(k) + σ2(k)σ2(−k)] = ∑k

ωkc†
k ck

HT

HT = ∑k
(Ekα†

k αk + ωkc†
k ck)

Tomonaga-Luttinger Model



Luttinger Model
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A model proposed by Luttinger (1963) is a slight variation on the Tomonaga model. It has the 

advantage of being exactly solvable, with fewer approximations.

The basic feature of the Luttinger model is that 

the system has two types of fermions. One has an 

energy spectrum given by , while the 

other has an energy spectrum given by . 

They are shown by the solid and dashed lines in 

Fig.6(a). He made an assumption that an infinite 

number of each kind of particle, since the 

occupied energy states stretch to negative infinity. 

εk = kvF

εk = − kvF

Fig.6. (a).The Luttinger model has two 
distinct particles, with separate energy 
bands. (b). The Tomonaga model has one 
particle, whose energy band is .|k |vF

Tomonaga-Luttinger Model



Luttinger Model
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The two kinds of fermions in the Luttinger model are denoted by the operators  and , 

where the subscript 1 or 2 designates the particle. The two bands are quite independent, so the 

two fermion operators anti-commute. Operators  and  are defined in a manner analogous 

to the Tomonaga model (p > 0):     

    .These 

commutation relations depend, in an important way, on the assumption that there is an 

infinite number of negative energy particles.  

Kinetic energy term in the Luttinger model  can be exactly 

represented by: 

a1,k,s a2,k,s

ρi(k) σi(k)

ϱi(p) = ∑k,s=±1
a†

i,p+k,sai,k,s σi(p) = ∑k,s=±1
sa†

i,p+k,sai,k,s

[σi(−p), σj (p′ )] = δijδpp′ pL /π [ϱi(−p), ϱj (p′ )] = δijδpp′ pL /π [σi(p), ϱj (p′ )] = 0

H0 = vF ∑s,k
(a†

1,k,sa1,k,s − a†
2,k,sa2,k,s)

H0 = vFπ /L∑s,k
(ϱ1(p)ϱ1(−p) + ϱ2(−p)ϱ2(p) + σ1(p)σ1(−p) + σ2(−p)σ2(p))

Tomonaga-Luttinger Model



Luttinger Model

18

The transformation to boson operators is:       

   . For particle 2, the “Fermi surface” is at 

. Electron-hole pairs are made mostly at negative wave vectors. Thus the operator 

 for  &  takes an electron from the occupied state  to the 

unoccupied state . The summation over all such electron-hole pairs is represented by 

boson creation operator . 

The Luttinger model has the advantage of being exactly solvable: various kinds of interaction 

terms may be added to the Luttinger model, provided the total fermion Hamiltonian’s charge and 

spin excitations are gapless. The disadvantage of the model is that it is unphysical, since it 

contains the infinite reservoir of negative energy particles.

ϱ1(−p) = b1,p (pL /π)1/2 ϱ2(−p) = b†
2,−p (pL /π)1/2

σ1(−p) = c1,p (pL /π)1/2 σ2(−p) = c†
2,−p (pL /π)1/2

−kF

a†
2,k,sa2,k+p,s p > 0 k < − kF −kF < k + p

k < − kF

b†
2,−p

Tomonaga-Luttinger Model



Luttinger Liquid
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A Luttinger liquid is a paramagnetic 1D metal without Landau quasi-particle excitations.  

“Paramagnetic” and “metal” require that the spin and charge excitations are gapless, more 

precisely with dispersions (  for charge and spin). The charge and spin modes 

(holons and spinons) possess different excitation energies ( ) and are bosons. This leads to 

the separation of charge and spin of an electron (or hole) added to the Fermi sea. 

The bosonic nature of charge and spin excitations, together with the reduced dimensionality 

leads to a peculiar kind of short-range order at T = 0. The system is at a (quantum) critical point, 

with power-law correlations, and the scaling relations between the exponents of its correlation 

functions are parameterized by renormalized coupling constants . The individual 

exponents are non-universal, i.e. depend on the interactions. For Luttinger liquids,  is the 

equivalent of the Landau parameters . 

ων ≈ vν |q | ν = ρ, σ

vρ ≠ vσ

Kν

Kν

f

Tomonaga-Luttinger Model



Predictions for Experiments
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The thermodynamics is not qualitatively different from a Fermi liquid, with a linear-in-T 

specific heat, and T-independent Pauli susceptibility and electronic compressibility: 

,  ,  . 

The electronic structure factor  and NMR spin-lattice relaxation rate , indicating charge 

and spin correlation respectively, translate into: , 

. The structure factor can be interpreted as showing fluctuations both of 

Peierls-type  and of Wigner-crystal-type  charge density waves, and the two 

terms in  come from the  and  spin fluctuations.  

If we consider electron-electron scattering in a band with filling factor 1/n, we obtain from the 

current-current correlations: ,   .

Cv = (vF /vρ + vF /vσ)γ0 /2 ⋅ T χ = 2Kσ /πvσ κ = 2Kρ /πvρ

S(k) T−1
1

S(k) ∼ |k − 2kF |Kρ + |k − 4kF |4Kρ−1

T−1
1 ∼ T + TKρ

(2kF) (4kF)

T−1
1 q ≈ 0 2kF

ρ(T ) ∼ Tn2Kρ−3 σ(ω) ∼ ωn2Kρ−5

Tomonaga-Luttinger Model
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Candidate Materials and Experimental Probes
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Experiments

Materials that can be regarded as 1D electron system: 

Chain-like compounds (TTF-TCNQ, , …) 

Edge state of Fractional Quantum Hall Effects 

Mesoscopic quantum wires, both on semiconductor and tube base (Carbon nanotubes/ Gold 

wires deposited on a Si surface/ …) 

Experimental probes that can be used:  

PES, especially ARPES (dispersion of spinons and holons, different velocities): Nature 

Physics 2, 397 - 401 (2006)  

Tunneling spectroscopy (power law dependence of DOS on energy): Nature |VOL 397| 18 

(1999), PRL 87, 18(2001)  

Transport (power law dependence of conductivity on temperature): Science 275,  

1922–1925 (1997)

SrCuO2



Spin-charge Separation in 1D Mott Insulator 
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Experiments

Fig.8. Illustration of Spin-Charge 
Separation in a 1D chain with one electron 
per site with strong onsite Coulomb 
repulsion. In ARPES, photon excites a hole.

Fig.7. Crystal structure, cleavage plane and 
relevant orbitals. : quasi-1D chain, 
AF Mott-insulator ground state 

SrCuO2



Spin-charge Separation in 1D Mott Insulator 

24

Experiments

Fig.9.(a). energy distribution curves for different  values 
showing two-peak feature. (b). experimental (symbols) and 
theoretical (solid and dashed lines) dispersions. 

k||

In LL, for each k the single qp peak 

splits into a spinon–holon two-peak 

structure, due to the different 

velocity of spinon and holon. Both 

peaks disperse towards the low-

binding-energy side as the 

momentum increases, with the 

high-energy feature dispersing 

faster than the low-energy feature. 

The holon (lower branch) disperses 

faster (with larger velocity) than the 

spinons (upper branch).



Spin-charge Separation in 1D Mott Insulator 
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Experiments

Fig.10. Spectral function of   along 

the chain direction. The raw data (black 
dots) show apparent two-peak structure. 
The solid black line is the sum of two 
Gaussian peaks (red line: spinon, blue: 
holon) and an integrated background 
(dashed line). The inset shows the expected 
underlying spectral function with edge 
singularities, obtained from the Beth–
Ansatz solution of the Hubbard model.The 
extra weight is consistent with an 
underlying spectral function with the 
double-edge singularities that are expected 
in the spin–charge separation picture. 

k|| = Γ



Transport Measurements in Carbon Nanotubes

26

Experiments

Fig.11. Conductance plotted against 
temperature for individual nanotube ropes. 
(a). Data for ropes that are deposited over 
pre-defined leads (bulk-contacted); (b). 
data for ropes that are contacted by 
evaporating the leads on top of the ropes 
(end-contacted). Sketches depicting the 
measurement configuration are shown in 
the lower insets. The plots show both the 
raw data (solid line) and the data 
corrected for the temperature dependence 
expected from the Coulomb blockade (CB) 
model (dashed line). The upper inset to (a) 
shows the power- law exponents inferred 
for a variety of samples. 



Tunneling Measurements in Carbon Nanotubes
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Experiments

Fig.12. The differential conductance 
dI/dV(proportional to  G(T) in linear 
response) measured at various 
temperatures. Inset in (a) and (b) are 
dI/dV curves taken on a bulk-
contacted rope and an end-contacted 
rope respectively for different 
temperatures. In both insets, a straight 
line on the two log plot is shown as a 
guide to the eye to indicate power-law 
behaviour. The main panels (a) and (b) 
show these measurements collapsed 
onto a single curve by using the 
scaling relations. The solid line is the 
theoretical result fitted.
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Further Discussions: 
Stability and Open Questions



Stability of Luttinger Liquid

29

Luttinger Liquid theory crucially relies on one-dimensionality. Moreover, most of our 

discussion was for T = 0, and ignored phonons, lattice effects, impurities, etc. Are these 

factors detrimental to Luttinger liquids? In many cases, the answer will depend on the scales 

one considers. 

Finite temperature doesn’t count, and the correlation functions mentioned above can be 

calculated for T > 0. However, charge-spin separation will be masked in the spectral function 

when . 

Interchain tunneling will introduce 3D effects. Depending on the on-chain interactions, it will 

either produce a crossover to a Fermi liquid (weak interactions), or to a long-range ordered 3D 

insulating or superconducting phase (strong interactions). In any event, a Luttinger liquid is 

unstable towards 3D coupling at low enough temperature (scales).

(vρ − vσ)q < T

Further Discussions



Stability of Luttinger Liquid
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Various studies of phonons coupled to Luttinger liquids have shown that depending on details of 

the electron-electron and electron-phonon interactions, a Luttinger liquid may remain stable, 

though renormalized, when phonons are added. Alternatively, the electron-phonon 

interaction could lead to the opening of a spin gap, and thereby destabilize the Luttinger 

liquid. But the correlation functions continue to carry certain remnants of Luttinger physics, 

like non-universal power laws (the system remains conducting), and charge-spin separation. 

When the crystal lattice is important (commensurate band filling), the system may become 

insulating. For a 1D band insulator, Luttinger liquid physics is expected to be lost completely, 

although not much is known firmly. More interesting is the case of a Mott insulator, brought 

about by electronic correlations. However even here, charge-spin separation is still seen in 

experiments. Moreover, far above the (charge or spin) gaps, they should no longer influence the 

physics, and genuine Luttinger liquid behavior is expected there. 

Further Discussions



Aspects of Mesoscopic Systems
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Due to the small sample size, boundary conditions become of importance, and may dominate the 

physics. 

The influence of isolated impurities on transport, or tunneling through quantum point contacts, is 

an important problem. The physical origin of this effect is the establishment of a strong 

Friedel oscillation around the impurity which will increasingly backscatter the electrons at 

lower energy scales.  

An impurity can therefore be assimilated with open boundary conditions.Quite generally, 

1D interacting fermions with open boundaries and gapless excitations form a bounded Luttinger 

liquid state, rather similar to ordinary Luttinger liquids but with a different set of exponents and 

scaling relations. The  are properties of the Hamiltonian, and therefore independent of 

boundary conditions.

Kv

Further Discussions



Open Questions
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Many important questions remain open, both in theory and experiment. 

One important problem relates to scales. Can both power laws and charge-spin separation 

be observed over the entire energy range? Do they depend on the specific Hamiltonian 

considered, e.g. on the interaction strength and range, and how?  

Concerning mesoscopic systems, only Luttinger liquids with open boundaries are thoroughly 

characterized. It is conceivable that other boundary conditions (Fermi liquid leads, boundary 

fields or spins, superconductors) lead to new sets of critical exponents.  

What is the spectral weight associated with Luttinger liquid physics in any given 

microscopic model, or in any given experimental system? How sure can we be that  the 

weight of the coherent spin and charge modes in the Green’s function is sufficiently high, so 

that experiments (e.g. photoemission) actually see these excitations, and not just incoherent 

contributions or bare high-energy excitations? 

Further Discussions



Thanks  for Attention!
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Appendix
Theory of Break-down of Landau FL

35

Fermi Liquid theory breaks down for one-dimensional (1D) metals. Technically, this happens 

because some vertices Fermi liquid theory assumes finite (those involving a  momentum 

transfer) actually diverge because of the Peierls effect. An equivalent intuitive argument is that 

in 1D, perturbation theory never can work even for arbitrarily small but finite interactions: when 

degenerate perturbation theory is applied to the coupling of the all-important electron states 

at the Fermi points , it will split them and therefore remove the entire Fermi surface! Free-

electron-like metal will therefore not be stable in 1D. The underlying physical picture is that the 

coupling of quasi-particles to collective excitations is small in 3D but large in 1D, no matter how 

small the interaction. 

2kF

±kF



Appendix
Bosonization

36

To complete the bosonization program, a local fermion operator must be expressed in terms of 

bosons. Exact operator identities are available for the Luttinger model, which can be summarized 

schematically as :  

This fermion-boson transformation turns bosonization into a useful device: all correlation 

functions can be calculated as simple harmonic oscillator averages. As a consequence, 

Luttinger liquid predictions for all physical properties can be produced.  

Bosonization is an easy and transparent way to calculate the properties of Luttinger liquids. 

However, it is not the only method. More general, and more powerful is the direct application of 

conformal field theory to a microscopic model of interacting fermions. For Luttinger liquids, both 

methods become identical, and one might view bosonization as solid state physicist’s way of doing 

conformal field theory. Also Green’s functions methods have been used successfully. 



Appendix
Roles of Electron-electron Interaction

37

One possibility is that the interactions open a gap in the spin and/or charge excitation spectrum. 

The system then no longer is paramagnetic and/or metallic. With a charge gap, we have a 1D Mott 

insulator, with a spin gap a conducting system with strong charge density wave or 

superconducting correlations, and gaps in both channels imply a band insulator. Luttinger liquid 

theory cannot be applied anymore. 

In the other case, charge and spin excitations remain gapless: a Luttinger liquid is formed. Then, 

electron-electron interactions will make , leading to charge-spin separation.  

Interactions will also renormalize the electronic compressibility and magnetic susceptibility, 

and the charge and spin stiffnesses, and by comparing the velocities measuring this renormalization 

to , the correlation exponents  can be defined. The  therefore only depend on the low-energy 

properties of the Hamiltonian. Two parameters per degree of freedom,  and , completely 

describe the physics of a Luttinger liquid. 

vρ ≠ vσ ≠ vF

vν Kν Kν

Kν vν



Appendix
Cross-section Effect

38

The spectral weight of the main valence band near the  

point is strongly suppressed. In the low-photon-energy 

data, the spectral weight of the main valence band is 

large (at least a few times the Zhang–Rice singlet 

feature). In that case, the holon edge is completely buried 

under the tail of the main valence band. 

In addition, the two-peak structure is prominent only 

for a certain region of k⊥ (high-k⊥ values). High-energy 

photons worked favourably in suppressing the main 

valence band spectral weight, which in combination with 

data over a large region in the momentum space allowed 

us to observe distinct spinon and holon branches.

Γ

Fig.13. Colour-scale plot of ARPES data.



Structure of Carbon Nanotubes
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Appendix

SWNTs are deposited from a suspension in dichloroethane 

onto a 1-mm-thick layer of   that has been thermally 

grown on a degenerately doped Si wafer, used as a gate 

electrode. Atomic force microscopy imaging reveals that 

the diameters of the ropes vary between 1 and 10 nm. 

SiO2

In the first method, from measurements in the Coulomb blockade regime, we learn that the electrons are 

confined to the length of rope between the leads. This implies that the leads cut the nanotubes into 

segments, and transport involves tunneling into the ends of the nanotubes (`end-contacted’). 

In other, samples were selected that showed Coulomb blockade behaviour at low temperatures with a 

single well-defined period, indicating the presence of a single quantum dot. The charging energy of these 

samples indicates a quantum dot with a size substantially larger than the spacing between the leads. 

Transport thus occurs by electrons tunneling into the middle, or bulk, of the nanotubes (`bulk-contacted'). 

Fig.14. FET of SWCNT bundle, with both 
semiconducting and metallic tubes in it, but 
transport is dominated by metallic ones.
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Appendix

A possible explanation for the approximate power-law 

behaviour is a strong energy dependence of the tunnel barrier, 

with increased tunnelling efficiency at high energies. This 

would lead to activated transport over the barrier, so that the 

conductance can be described by , , where Vb  

is the height of the tunnel barriers. However, this is inconsistent 

with the fact that the conductance extrapolates to G~0 at T~0.

G ∼ exp(−Vb /kT )

The type of power-law behaviour could also arise if the electron transport were to occur through 

multiple quantum dots in series, formed by disorder or by barriers produced when the nanotubes bend 

over the lithographically defined  contacts. But as we have chosen to study only nanotube ropes that 

exhibit a single dominant period for the Coulomb oscillations at low temperatures, our samples are 

likely to contain only a single quantum dot. 


