Solid State Theory

## Integer quantum Hall effect

May 8, 2023

## Agenda

- Integer quantum Hall effect
- Current response of a LL
- Edge states
- Percolation, delocalization, and Hall transition
- Laughlin's argument
- TKNN number


## Integer quantum Hall effect (QHE)

- IQHE $\quad \sigma_{x y}=\nu \frac{e^{2}}{h}$, filling factor $\nu \in \mathbb{Z}$

$$
\rho_{y x}=\frac{1}{\nu} \frac{h}{e^{2}}
$$

- Filling factor $\frac{1}{\nu}=\frac{N_{\Phi}}{N_{e}}$



## First experiment

Von Klitzing et al.
Phys. Rev. Lett. 45, 494 (1983).

FIG. 1. Recordings of the Hall voltage $U_{\mathrm{H}}$, and the voltage drop between the potential probes, $U_{p p}$, as a function of the gate voltage $V_{g}$ at $T=1.5 \mathrm{~K}$. The constant magnetic field $(B)$ is 18 T and the source drain current, $I$, is $1 \mu \mathrm{~A}$. The inset shows a top view of the device with a length of $L=400 \mu \mathrm{~m}$, a width of $W=50 \mu \mathrm{~m}$, and a distance between the potential probes of $L_{p p}=130$ $\mu \mathrm{m}$.

## Zoo of quantum Hall plateaux


H. L. Störmer.

Phys. B: Cond. Matt. 177, 401(1992)

## Disorder is important

- Lorentz boost on a perfect 2DEG $J^{\prime}=-n e v$

$\Rightarrow \boldsymbol{E}^{\prime}=\frac{B}{n e} \boldsymbol{J}^{\prime} \times \hat{B}$

$$
\Rightarrow \rho=\frac{B}{n e}\left(\begin{array}{cc}
0 & +1 \\
-1 & 0
\end{array}\right)
$$

No quantization!

- Must have disorder to observe QHE


## Hamiltonian

- Landau gauge

$$
a=-B x \hat{y}
$$

- Hamiltonian $H=\frac{1}{2 m}\left[p_{x}^{2}+\left(p_{y}-e B x\right)^{2}\right]$
- Wavefunction

$$
\Psi(x, y)=e^{\mathrm{i} k y} \psi_{k}(x)
$$

$$
\begin{aligned}
H \Psi(x, y) & =e^{\mathrm{i} k y} \frac{1}{2 m}\left[p_{x}^{2}+(\hbar k-e B x)^{2}\right] \psi_{k}(x) \\
\Rightarrow H_{k} & =\frac{1}{2 m}\left[p_{x}^{2}+\frac{1}{2} m \omega_{c}^{2}\left(x-x_{k}\right)^{2}\right]
\end{aligned}
$$

$\begin{aligned} & \text { Cyclotron } \\ & \text { frequency }\end{aligned} \omega_{c}=\frac{e B}{m} \quad \begin{gathered}\text { Magnetic } \\ \text { length }\end{gathered} l_{B}=\sqrt{\frac{\hbar}{e B}} \quad \begin{gathered}\text { Guiding } \\ \text { center }\end{gathered} x_{k}=l_{B}^{2} k$

## Landau levels

- Energy levels $\varepsilon_{n k}=\left(n+\frac{1}{2}\right) \hbar \omega_{c}$

Indep. of $k \rightarrow$ high degree of degeneracy

- Wavefunctions

Hermite polynomial

$\psi_{n k}(\boldsymbol{r})=\frac{1}{\sqrt{\mathcal{A}}} e^{i k y} H_{n}\left(\left(x-x_{k}\right) / l_{B}\right) \exp \left[-\frac{\left(x-x_{k}\right)^{2}}{2 l_{B}^{2}}\right]$


$$
x_{k} \in\left[0, L_{x}\right] \Rightarrow k \in\left[0, L_{x} / l_{B}^{2}\right]
$$

> States on the left and right edges have very different $k$ values
$>$ Number of states in a LL $=N_{\Phi}$

$$
\nu=N_{e} / N_{\Phi}
$$

## Quantum dynamics of LLs

- Arbitrary wavefunction

$$
\begin{aligned}
& \Psi(\boldsymbol{r}, t)=\frac{L_{y}}{2 \pi} \sum_{n} \int d k a_{n}(k) \psi_{n k}(\boldsymbol{r}) e^{-\mathrm{i}\left(n+\frac{1}{2}\right) \omega_{c} t} \\
\Rightarrow & \text { periodic motion }: \Psi\left(\boldsymbol{r}, t+2 \pi / \omega_{c}\right)=\Psi(\boldsymbol{r}, t)
\end{aligned}
$$

Correponding to the classical cyclotron orbits


## Current response without E-field

- Lowest LL (LLL):

$$
r_{k}(\boldsymbol{r})=\frac{1}{\sqrt{\pi^{1 / 2} L_{y} l_{B}}} e^{i k y} e^{-\frac{1}{2 \ell^{2}}\left(x-k l_{B}^{2}\right)^{2}}
$$

- Current density for a given k

$$
j(\boldsymbol{r})=-\frac{e}{m_{\mathrm{e}}} \psi_{k}^{*}(\boldsymbol{r})[-i \hbar \nabla+e \boldsymbol{a}(\boldsymbol{r})] \psi_{k}(\boldsymbol{r})
$$

- y -component of current

$$
\begin{aligned}
I_{y} & =-\frac{e}{m_{\mathrm{e}} \pi^{1 / 2} l_{B}} \frac{1}{L_{y}} \int_{-\infty}^{\infty} d x e^{-\frac{1}{2 l_{B}^{2}}\left(x-x_{k}\right)^{2}}(\hbar k-e B x) e^{-\frac{1}{2 l_{B}^{2}}\left(x-x_{k}\right)^{2}} \\
& =\frac{e \omega_{\mathrm{c}}}{\pi^{1 / 2} \ell} \frac{1}{L_{y}} \int_{-\infty}^{\infty} d x e^{-\frac{1}{\ell^{2}}\left(x-x_{k}\right)^{2}}\left(x-x_{k}\right)=0
\end{aligned}
$$

> Flux from planewave in y-direnction gets canceled by the vector potnetial contribution!
$>$ Group velocity vanishes $\quad v_{y}=\frac{1}{\hbar} \frac{\partial \varepsilon_{k n}}{\partial k}=0$

## Effect of an E-field

- Adding E-field: $\quad V(r)=+e E x$

$$
\begin{aligned}
H_{k} & =\frac{p_{x}^{2}}{2 m}+\frac{1}{2} m \omega_{\mathrm{c}}^{2}\left(x-x_{k}\right)^{2}+e E x \\
& =\frac{p_{x}^{2}}{2 m}+\frac{1}{2} m \omega_{\mathrm{c}}^{2}\left(x-x_{k}^{\prime}\right)^{2}+e E x_{k}^{\prime}+\frac{1}{2} m v_{\mathrm{d}}^{2}
\end{aligned}
$$

New guiding center $\quad x_{k}^{\prime}=x_{k}-\frac{e E}{m \omega_{c}} \quad$ Drift velocity $\quad v_{d}=\frac{E}{B}$

- LLs in electric field $\quad \varepsilon_{n k}=\left(n+\frac{1}{2}\right) \hbar \omega_{c}+e E x_{k}^{\prime}+\frac{1}{2} m v_{\mathrm{d}}^{2}$


Potential Kinetic energy energy

## Current response

With electric field: $\quad x_{k}^{\prime}=x_{k}-\frac{e E}{m \omega_{c}} \quad v_{d}=\frac{E}{B}$

## current

$$
\begin{aligned}
I_{y}(k) & =\frac{e \omega_{c}}{\pi^{1 / 2} l_{B}} \frac{1}{L_{y}} \int_{-\infty}^{\infty} \mathrm{d} x e^{-\frac{1}{\nu_{B}}(x-a} \\
& =\frac{e \omega_{c}}{\pi^{1 / 2} l_{B}} \frac{1}{L_{y}} \sqrt{\pi} l_{B}\left(x_{k}^{\prime}-x_{k}\right) \\
& =\frac{1}{L_{y}} e \omega_{c}\left(-\frac{e E}{m \omega_{c}^{2}}\right) \\
& =-\frac{e v_{d}}{L_{y}}
\end{aligned}
$$

Current density

$$
\begin{aligned}
& j_{y}=\frac{L_{y}}{L_{x}} \int_{0}^{L_{x} / l_{B}^{2}} \frac{\mathrm{~d} k}{2 \pi} I_{y}(k) \\
& =-e v_{d} \frac{1}{L_{x}} \frac{L_{x}}{2 \pi l_{B}^{2}} \\
& =-\frac{e^{2}}{h} E
\end{aligned}
$$

Hall conductivity

$$
\sigma_{y x}=-\frac{e^{2}}{h}
$$

## Current response



It is unclear:

- how does an filled band (insulator) carry (Hall) current?
- why the Hall conductivity is quantized?


## Edge states

- Edges are modeled as confining potential
$\varepsilon_{n k} \approx\left(n+\frac{1}{2}\right) \hbar \omega_{c}+V\left(x_{k}^{\prime}\right)+\cdots$
- Group velocity
$\boldsymbol{v}_{k}=\left.\frac{1}{\hbar} \frac{\partial \varepsilon_{k n}}{\partial k} \hat{y} \approx \frac{l_{B}^{2}}{\hbar} \frac{d V(x)}{d x}\right|_{x=X_{k}} \hat{y}$


This leads to unidirectional motion of electrons on the edges: chiral edge states

## Hall current carried by the edge

We use the Landauer formula

$$
\begin{array}{rlr}
I & =-\frac{e}{L_{y}} \int_{-\infty}^{+\infty} d k \frac{L_{y}}{2 \pi} \frac{1}{\hbar} \frac{\partial \epsilon_{k}}{\partial k} n_{k} & \text { Hall voltage } \\
& =-\frac{e}{h} \int_{\mu_{\mathrm{L}}}^{\mu_{\mathrm{R}}} d \epsilon & (-e) V_{\mathrm{H}} \equiv(-e)\left[V_{\mathrm{R}}-V_{\mathrm{L}}\right]=\left[\mu_{\mathrm{R}}-\mu_{\mathrm{L}}\right] . \\
& =-\frac{e}{h}\left[\mu_{\mathrm{R}}-\mu_{\mathrm{L}}\right] &
\end{array}
$$

$$
I=\nu \frac{e^{2}}{h} V_{\mathrm{H}} \Rightarrow \begin{gathered}
\sigma_{x x}=0 \\
\sigma_{x y}=\nu \frac{e^{2}}{h}
\end{gathered}
$$

## Semiclassical picture of chiral edge states



Skipping-orbit motion: no backscattering even with disorder

## Semiclassical percolation

- Disorder in the bulk of 2DEG can be modeled as a random potential.
- Assume small hybridization between LLs

$$
\mu_{n}^{*}=\left(n+\frac{1}{2}\right) \hbar \omega_{\mathrm{c}}
$$


(a)

(b)

Insulating bulk No electron on edges

(c)

Insulating bulk
Chiral current on edges

## Percolation and localization




## Broadened LLs with diorder



Density of states of (a) perfect quantum Hall system, and (b) with disorder. In (b), shaded regions are extended, and unshaded regions are localized.

## Graphene in a uniform magnetic field

- The Hamiltonian

$$
H_{\tau}=v\left(\tau \sigma_{x} p_{x}+\sigma_{y} p_{y}\right)
$$

- Uniforma B field $B=-B \hat{z}$
- Peierls' substitution (minimal coupling) $\Pi=p+e a$

Mechanical momentum:

$$
\begin{aligned}
H_{\tau}=v & {\left[\begin{array}{cc}
0 & \tau \Pi_{x}-\mathrm{i} \Pi_{y} \\
\tau \Pi_{x}+\mathrm{i} \Pi_{y} & 0
\end{array}\right] } \\
{\left[\Pi_{x}, \Pi_{y}\right] } & =\left[-\mathrm{i} \hbar \partial_{x}+e a_{x},-\mathrm{i} \hbar \partial_{y}+e a_{y}\right] \\
& =-\mathrm{i} \hbar\left(\left[\partial_{x}, e a_{y}\right]+\left[\partial_{y}, e a_{x}\right]\right) \\
& =\mathrm{i} \hbar^{2} / l_{B}^{2}
\end{aligned}
$$

## Graphene in a uniform magnetic field

- Ladder operators $\left[a, a^{\dagger}\right]=1$

$$
a=\frac{l_{B}}{\sqrt{2} \hbar}\left(\Pi_{x}+i \Pi_{y}\right), \quad a^{\dagger}=\frac{l_{B}}{\sqrt{2} \hbar}\left(\Pi_{x}-i \Pi_{y}\right)
$$

- Then K, tau =1

$$
\begin{gathered}
H_{K}=v\left[\begin{array}{cc}
0 & \Pi_{x}-i \Pi_{y} \\
\Pi_{x}+i \Pi_{y} & 0
\end{array}\right]=\epsilon_{\mathrm{D}}\left[\begin{array}{cc}
0 & a^{\dagger} \\
a & 0
\end{array}\right] \\
\epsilon_{\mathrm{D}}=\sqrt{2} \hbar v_{\mathrm{F}} / l_{B}
\end{gathered}
$$

## Graphene in a uniform magnetic field

- Trick $H_{K}^{2}=\epsilon_{\mathrm{D}}^{2}\left[\begin{array}{cc}a^{\dagger} a & 0 \\ 0 & a a^{\dagger}\end{array}\right]=\epsilon_{\mathrm{D}}^{2}\left[\begin{array}{cc}a^{\dagger} a & 0 \\ 0 & a^{\dagger} a+1\end{array}\right]$
- So $\mathrm{H}_{\mathrm{K}}{ }^{2}$ is already diagonal, with eigenfuncion $\left[\phi_{n}, \phi_{n-1}\right]^{T}$
- Then the Landau levels are

$$
\begin{array}{r}
\varepsilon_{n}= \pm \epsilon_{\mathrm{D}} \sqrt{|n|}=\operatorname{sgn}(n) \epsilon_{\mathrm{D}} \sqrt{|n|} \\
n=0, \pm 1, \pm 2, \cdots
\end{array}
$$

- The LL's are not equally spaced in energy
- Positive (electron) and negative (hole) LL's
- Zeroth LL, $\varepsilon_{0}=0$ : anomalous quantum Hall sequence

Anomalous quantum Hall sequence of graphene

- A filled electron LL: $+\mathrm{e}^{2} / \mathrm{h}$
- A filled hole LL: -e²/h
- at neutral point $\sigma_{x y}=0$
- The zeroth LL:
$K$ contributes (1/2) $\times e^{2} / h, K^{\prime}$ contributes (1/2) $\times e^{2} / h$
With spin degeneracy, the Hall step is $2 \mathrm{e}^{2} / \mathrm{h}$

$$
\sigma_{x y}=4\left(n+\frac{1}{2}\right) \frac{e^{2}}{h}=( \pm 2, \pm 6, \pm 10, \ldots) \frac{e^{2}}{h}
$$

## IQHE of graphene



## Laughlin's argument



Electromotive force $\quad-\frac{\mathrm{d} \Phi}{\mathrm{d} t}$

Principle of gauge invariance: changing the flux by a quantum can only map the system into itself, or exchange it with an excited state.

## Laughlin's argument

- If $\Delta \Phi=h / e$, then the electrons pumped from 1 to 2 must be an integer, $c$
- So the work done, as $\Phi$ increases by h/e, is

$$
\begin{gathered}
\Delta \Phi \times I=c e \Delta V \\
\sigma_{\mathrm{H}}=\frac{I}{\Delta V}=c \frac{e^{2}}{h}
\end{gathered}
$$

- The problem with Laughlin's argument: c is (intrinsically) undetermined; it can be any integer.
- The integer is the Chern number (or TKNN number), which is $\pi\left(S^{2}\right)$. We need Brillouin zone!!


## Magnetic Bloch theorem

- The Bloch theorem comes from lattice translation symmetry forming an Abelian group

$$
T_{R} H T_{R}^{-1}=H \quad\left[T_{R}, T_{R^{\prime}}\right]=0
$$

- Uniform B-field on a 2DEG

$$
H=\frac{1}{2 m}(p+e a)^{2}+v
$$

- The vector potential is a linear function of coordinates $r$

$$
\begin{aligned}
& a_{\mu}=F_{\mu \nu} r_{\nu} \\
& B_{\mu}=\epsilon_{\mu \nu \gamma} \partial_{\nu} a_{\gamma}=\epsilon_{\mu \nu \gamma} F_{\gamma \nu}
\end{aligned}
$$

## Gauge transformation

- Under lattice translation

$$
T_{R} H T_{R}^{-1}=\frac{1}{2 m}\left(p_{\mu}+e a_{\mu}(r)+e F_{\mu \nu} R_{\nu}\right)^{2}+V(r)
$$

- So the magnetic Hamiltonian is not invariant under translation.
- But can we gauge out $F_{\mu \nu} R_{\nu}$ ? $\quad \nabla \chi=F_{r \nu} R_{v}$

$$
\begin{aligned}
& \chi=r_{\mu} F_{\mu \nu} R_{\nu} \\
& e^{\mathrm{i} \chi \chi / \hbar} T_{R} H T_{R}^{-1} e^{-\mathrm{i} \ell \chi / \hbar}=H
\end{aligned}
$$

- That is, H is invariant after a translation and a gauge transformation


## Magnetic translation

- Introduce a magnetic translation $\quad M_{R}=e^{\mathrm{i} e \chi / \hbar} T_{R}$
- Acting on a function

$$
M_{R} \psi(r)=\exp \left(\mathrm{i} \frac{e}{\hbar} F_{\mu} r_{\mu} R_{\nu}\right) \psi(r+R)
$$

- Acting twice

$$
\begin{aligned}
M_{R^{\prime}} M_{R} \psi(r) & =\exp \left(\frac{i e}{\hbar} F_{r \eta} r_{\gamma} R_{\eta}^{\prime}\right) \exp \left(\frac{i e}{\hbar} F_{\mu \nu}\left(r_{r}+R_{r}^{\prime}\right) R_{v}\right) \psi\left(r+R+R^{\prime}\right) \\
& =\exp \left(\frac{\mathrm{i} e}{\hbar} F_{r v} R_{r}^{\prime} R_{v}\right) \exp \left(\frac{\mathrm{i} e}{\hbar} F_{\gamma \eta} r_{\gamma}\left(R_{\eta}^{\prime}+R_{\eta}\right)\right) \psi\left(r+R+R^{\prime}\right)
\end{aligned}
$$

## Magnetic translation

$$
\begin{aligned}
M_{R^{\prime}} M_{R} & =\exp \left(\frac{\mathrm{i} e}{\hbar} F_{\mu \nu} R_{\mu}^{\prime} R_{\nu}\right) M_{R+R^{\prime}} \\
& =\exp \left(\frac{\mathrm{i} e}{\hbar}\left(F_{\mu \nu}-F_{\nu \mu}\right) R_{\mu}^{\prime} R_{\nu}\right) M_{R} M_{R^{\prime}}
\end{aligned}
$$

- So we have a magnetic translation operator that does leave Hamiltonian invariant, but $M_{R}$ and $M_{R^{\prime}}$ do not commute, in general
- But the phase is just the magnetic flux threading the parallelogram $R^{\prime} \times R$


$$
\left(F_{\mu \nu}-F_{\nu \mu}\right) R_{r}^{\prime} R_{\nu}=\boldsymbol{B} \cdot \boldsymbol{R}^{\prime} \times \boldsymbol{R}=\Phi
$$

## Magnetic translation

$$
M_{R^{\prime}} M_{R}=\exp \left(\mathrm{i} 2 \pi \Phi / \Phi_{0}\right) M_{R} M_{R^{\prime}}
$$

- No commutation means no Bloch theorem ...
- Except when $\Phi / \Phi \_0=$ integer !
- Let $B \cdot a_{1} \times a_{2}=\frac{p}{q} \Phi, \quad p, q \in \mathbb{N}$
- Consider the lattice vector $R_{m}=n_{1} a_{1}+n_{2}\left(q a_{2}\right)$
- Then for two consecutive translations commute for these magnetic translations

$$
M_{R_{m}^{\prime}} M_{R_{m}}=M_{R_{m}} M_{R_{m}^{\prime}}
$$

## Magnetic Bloch theorem

$M_{R_{m}} \psi_{k}(r)=e^{\mathrm{i} k \cdot R_{m}} \psi_{k}(r)$

$$
R_{m}=n_{1} a_{1}+n_{2}\left(q a_{2}\right)
$$

For a special subset of the full translation group of the crystal.
In group theory language, this is called a projective representation of the translation group.

- Consider

$$
\begin{gathered}
M_{R_{m}} M_{a_{2}} \psi_{k}(r)=\exp \left(\frac{e}{\hbar} R_{m} \times a_{2} \cdot B\right) M_{a_{2}} m_{R_{m}} \psi_{k}(r) \\
=\exp [i \underbrace{\left(k+\frac{e}{\hbar} a_{2} \times B\right)}_{k^{\prime}} \cdot R_{m}] M_{a_{2}} \psi_{k}(r)
\end{gathered}
$$

Which means $M_{a_{2}} \psi_{k}$ is also a magnetic Bloch function at

## Magnetic Brillouin zone

$$
\begin{aligned}
k^{\prime}=k+\frac{e}{\hbar} a_{2} \times B & =k+\frac{e|B|}{\hbar} a_{2} \times \hat{z} \\
& =k+\frac{e|B|}{\hbar} \frac{a_{1} \times a_{2}}{2 \pi} \boldsymbol{b}_{1} \\
& =k+\frac{p}{q} \boldsymbol{b}_{1}
\end{aligned}
$$



The magnetic Brillouin zone is composed of q degenerate pieces.

