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Integer quantum Hall effect (QHE)

• IQHE

• Filling factor

2DEG



First experiment Von Klitzing et al.
Phys. Rev. Lett. 45, 494 (1983).



Zoo of quantum Hall plateaux

H. L. Störmer.

Phys. B: Cond. Matt. 177, 401(1992)



Disorder is important

• Lorentz boost on a perfect 2DEG

Lab frame Moving frame (-v)

• Must have disorder to observe QHE

No quantization!



Hamiltonian

• Landau gauge

• Hamiltonian

• Wavefunction

Transl. inv. in y

Cyclotron
frequency

Magnetic
length

Guiding
center



Landau levels

• Energy levels

• Wavefunctions

Indep. of k → high degree of degeneracy

http://www.foldmagazine.com/

Hermite polynomial

➢ States on the left and right edges have 
very different k values

➢ Number of states in a LL = 



Quantum dynamics of LLs

• Arbitrary wavefunction

Correponding to the classical cyclotron orbits

k-orbit r-orbit



Current response without E-field

• Lowest LL (LLL): 

• Current density for a given k

• y-component of current

➢ Flux from planewave in y-direnction gets canceled by the vector 
potnetial contribution!

➢ Group velocity vanishes 



Effect of an E-field

• Adding E-field:

New guiding center Drift velocity

• LLs in electric field

E = 0

E > 0

Potential
energy

Kinetic
energy



Current response

With electric field:

current Current density

Hall conductivity



Current response

Quantized Hall conductivity

E = 0

E > 0
Electric field lifts degeneracy
within a LL, leading to dispersion
and the drift velocity

It is unclear:

• how does an filled band (insulator) carry (Hall) current?

• why the Hall conductivity is quantized?



Edge states
• Edges are modeled as confining potential

• Group velocity

This leads to unidirectional motion of electrons on
the edges: chiral edge states



Hall current carried by the edge

We use the Landauer formula

Hall voltage



Semiclassical picture of chiral edge states

Skipping-orbit motion: no backscattering even with disorder



Semiclassical percolation
• Disorder in the bulk of 2DEG can be modeled as a random potential.
• Assume small hybridization between LLs

Insulating bulk
No electron on edges

Insulating bulk
Chiral current on edges

Percolation transition



Percolation and localization



Broadened LLs with diorder

Density of states of (a) perfect quantum Hall 
system, and (b) with disorder. In (b), shaded regions 
are extended, and unshaded regions are localized. 



Graphene in a uniform magnetic field

• The Hamiltonian

• Uniforma B field

• Peierls’ substitution (minimal coupling)

Mechanical momentum:



Graphene in a uniform magnetic field

• Ladder operators

• Then K, tau =1



Graphene in a uniform magnetic field

• Trick

• So HK
2 is already diagonal, with eigenfuncion 𝜙𝑛, 𝜙𝑛−1

𝑇

• Then the Landau levels are

• The LL’s are not equally spaced in energy

• Positive (electron) and negative (hole) LL’s

• Zeroth LL, 𝜀0 = 0: anomalous quantum Hall sequence



Anomalous quantum Hall sequence of graphene

• A filled electron LL: +e2/h

• A filled hole LL: -e2/h

• at neutral point 𝜎𝑥𝑦 = 0

• The zeroth LL:

K contributes (1/2) x e2/h, K’ contributes (1/2) x e2/h

With spin degeneracy, the Hall step is 2 e2/h



IQHE of graphene



Laughlin’s argument

Electromotive force

Principle of gauge invariance:
changing the flux by a
quantum can only map the
system into itself, or
exchange it with an excited
state.



Laughlin’s argument

• If ΔΦ = ℎ/𝑒, then the electrons pumped from 1 to
2 must be an integer, c

• So the work done, as Φ increases by h/e, is

• The problem with Laughlin’s argument: c is
(intrinsically) undetermined; it can be any integer.

• The integer is the Chern number (or TKNN 
number), which is 𝜋(𝑆2). We need Brillouin zone!!



Magnetic Bloch theorem

• The Bloch theorem comes from lattice translation 
symmetry forming an Abelian group

• Uniform B-field on a 2DEG

• The vector potential is a linear function of 
coordinates r 



Gauge transformation

• Under lattice translation

• So the magnetic Hamiltonian is not invariant under 
translation.

• But can we gauge out 𝐹𝜇𝜈𝑅𝜈?

• That is, H is invariant after a translation and a gauge 
transformation



Magnetic translation

• Introduce a magnetic translation

• Acting on a function

• Acting twice



Magnetic translation

• So we have a magnetic translation 
operator that does leave Hamiltonian 
invariant, but 𝑀𝑅 and 𝑀𝑅′ do not 
commute, in general 

• But the phase is just the magnetic flux 
threading the parallelogram  R’ x R



Magnetic translation

• No commutation means no Bloch theorem …

• Except when Φ/Φ_0 = integer !

• Let

• Consider the lattice vector

• Then for two consecutive translations commute for these 

magnetic translations



Magnetic Bloch theorem

For a special subset of the full translation group of the crystal. 

In group theory language, this is called a projective 

representation of the translation group.

• Consider

Which means 𝑀𝑎2𝜓𝑘 is also a magnetic Bloch function at 



Magnetic Brillouin zone

The magnetic 
Brillouin zone is 
composed of q 
degenerate pieces.


