Lecture 1

02/20/23, M.

 

Today

Reading: GY 15.1 -- 15.3.

 

1. Scope of condensed matter physics
2. Classification of condensed matters
3. Theories for condensed matter physics
4. Many-electron system
(1)H=T^+V^ext+U^=i[pi22m+vext(r)]+12iju(ri,rj)

Central to the understanding of condensed matter system, this problem is generally hard to solve.

 

5. Free electron gas
(2)H0=p22mψkσ(r)=eikr(2π)3/2,εkσ=2k22mψkσ|ψkσ=δσσδ(kk)

 

In second quantization

(3)H0=kσεkσakσakσ

The ground state (g.s. 基态) energy is given by

(4)E0=H0=kσεkσf0(εkσ)

where the Fermi-Dirac distribution function is defined as

(5)f0(ε)=1eβ(εμ)+1

At zero temperature (T=0), f(ε)=θ(με) and μ(T=0)=εF

(6)E0=kσεkσθ(εFε)=2Vk<kFd3k(2π)3εkσ=35NεF

that is, average energy per electron is

(7)ε=35εF

The dimensionless rs parameter characterizes the linear scale of a electron gas

(8)43π(rsa0)3=VN

The Bohr radius a0=4πϵ02/me20.529 Å , energy unit Rydberg 1 Ry=e2/4πϵ0(2a0)13.6 eV. From the relation

(9)kσk<kF=N3π2n=kF3

we have the kinetic energy of a uniform electron gas (with or without interaction)

(10)E0N=2.21rs2Ry.
6. Turn on the interaction
(11)U^=12k1σ1k2σ2k3σ3k4σ4Uk1σ1,k2σ2,k3σ3,k4σ4ak1σ1ak2σ2ak3σ3ak4σ4

The matrix element is

(12)Uk1σ1,k2σ2,k3σ3,k4σ4=k1σ1,k2σ2|U(r(1)r(2))|k3σ3,k4σ4=k1k2|U(r(1)r(2))|k3k4δσ1σ3δσ2σ4

for the spin-independent two-body interaction.

(13)k1k2|U(r(1)r(2))|k3k4=dr(1)dr(2)k1k2|r(1)r(2)U(r(1)r(2))r(1)r(2)|k3k4=1V2dr(1)dr(2)ei(k1k3)r(1)ei(k2k4)r(2)U(r(1)r(2))

Performing a change of variables (换元): r(1)=12r+R, r(2)=12r+R,

(14)k1k2|U(r(1)r(2))|k3k4=1V2dr(1)dr(2)ei(k1+k2k3k4)Rei(k1k2k3+k4)r/2U(r)=1Vδk1+k2,k3+k4U(k1k3)

So the interaction energy is

(15)U^=12Vq0,k,p,σ,σU(q)ak+q,σapq,σap,σak,σ

where q=0 component is the electrostatic energy cancelled out with the direct Hartree energies from the background.

Then the first-order energy is

(16)E(1)N=12VNq0,k,p,σ,σU(q)ak+q,σapq,σap,σak,σ
(17)E(1)N=12VNq0,k,σU(q)nk+qσnkσ22VNq0,kU(q)θ(kF|k+q|)θ(kFk)

where we have used the notation

(18)[dk]=ddk(2π)d.

Using the Coulomb interaction

(19)U(q)=e2ϵ0q2

we find

(20)E(1)N=0.916rs Ry.

Then we have for the interacting electron gas

(21)EN=2.21rs2kinetic+0Hartree0.916rsexchangeHartree-Fock approximation+correlation