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Introduction

Tetrahedral packing in metal crystals is ubiquitous; it is also
complex.[1–4] While tetrahedra combined with octahedra fill
space in the well-known face-centered-cubic and hexagonal-
closest-packed structures, tetrahedral packing leads to the
Frank–Kasper phases,[5–8] structures such as the Laves
phases,[9,10] Al6Mg11Zn11,

[11] and Cd3Cu4,
[12–14] with unit cells

extending from tens to hundreds or even thousands of
atoms.[15–20]

Worse yet for their understanding, perfect regular tetrahe-
dra do not fill space. While tetrahedra plus octahedra assem-
ble into clusters of easily discerned octahedral or hexagonal
symmetry, symmetries which naturally extend into the crys-
tal symmetry as a whole, twenty tetrahedra come together
to make a filled icosahedron, a cluster whose fivefold rota-
tions bear little relation to crystal symmetries.

In this paper we will discuss the most regular of tetrahe-
dral cluster packing, packing in which tetrahedra come to-
gether to make filled icosahedra. We will show how, in these
cases, pure tetrahededral packing may not lead to true crys-
tal symmetries, but in general leads to a variety of pseudo fi-
vefold rotational symmetries. We will find that the bonds at
the center of these tetrahedral clusters form the pseudo-five-
fold rotation axes, rotation axes which can be shown to
dominate the single crystal x-ray diffraction patterns.[8,12,21, 22]

We will see that tetrahedrally-packed icosahedral and deca-
gonal quasicrystals are just two of four limiting cases.

We will further show the symmetries of the strongest dif-
fraction peaks are not only controlled by the central bonds
of the tetrahedral clusters, but that, viewed as vectors, the
directions defined by these strongest diffraction peaks ac-
tually are the directions of the central bonds. We will find
these strong diffraction peaks viewed as vectors form recip-
rocal space clusters of unusual shape and pseudosymmetry.

Examining these diffraction peaks, we can apply the Jones
theory of intermetallic stability,[23–25] a quantum theory
which connects strong diffraction to optimal numbers of va-
lence electrons, and which, as we further discuss in this
paper, can be beneficially related to tight-binding and ex-
tended H�ckel theories.[26–28] We therefore relate tetrahedral
packing to possible atomic stoichiometries and connect the
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tetrahedral cluster geometry to electronic structure and
phase stability. The four known Cu–Cd compounds
(CdCu2,

[29,30] Cd3Cu4,
[12] Cu5Cd8,

[31,32] and Cu3Cd10
[33]) will be

used to illustrate these relationships.
In this article, we consider four different limiting cases of

tetrahedra packed into filled icosahedral clusters. In two of
these, the clusters will be of respectively Ih and D5h symme-
try, known quasicrystal point groups.[34–38] In the other two
cases, the clusters will prove to be of Td and D3h symmetry
and will result in, respectively, cubic and hexagonal crystal-
line structures. The literature has found common ground for
these structures as projections of six-[39–42] or eight-dimen-
sional[43–47] Bravais lattices, curved topology,[21,48, 49] and net-
works of disclinations.[50–52] The current work pares these
mathematical approaches to their bare minimum, that is, to
concepts which describe concrete 3D crystals: the 3D pseu-
dosymmetries, the pseudo-equivalences of their 3D diffrac-
tion reflections, and the tetrahedral organization of both
their 3D real and reciprocal space clusters.

Results and Discussion

Aufbau of tetrahedral clusters : In the plane, six equilateral
triangles pack perfectly around a single atom (Figure 1).
The analogous 3D question of how many tetrahedra can be
placed around a single atom is more difficult. As Figure 1
shows, one can place twenty tetrahedra around an atom, but
the resultant cluster has deep crevasses, and is not suitable
for the packing of atoms. To remove these crevasses, we
must make the tetrahedra slightly irregular. If half of the six
edges of the tetrahedra are 95 % the length of the other
half, the twenty slightly irregular tetrahedra coalesce into a
single filled and perfect icosahedron (see Figure 1) with all
crevasses between tetrahedra removed.

In exactly the same way, we can pose the question of the
best way of placing tetrahedra around a pair of atoms. The
answer, as is shown in Figure 2, is five, though once again
the tetrahedra must be made slightly irregular. If we add tet-
rahedra at the two ends of this ring of tetrahedra, we end up

with the cluster shown in Figure 3. Each of the central
atoms now has twenty tetrahedra around it, each of these
twenty tetrahedra form imperfect icosahedra. The overall
cluster has nineteen atoms to it. As Figure 3 shows, this clus-
ter can be viewed as the fusing of two filled icosahedra. The
cluster is composed of thirty-five tetrahedra, as the central
five tetrahedra are part of both of the filled icosahedra. The
cluster has D5h symmetry. As this cluster was built up from a
pair of atoms lying along an edge of a tetrahedron, we refer
to it as the edge-centered-cluster.

In exactly the same way, we can ask the question of plac-
ing tetrahedra around a central equilateral triangle of atoms
as well as around a central tetrahedron itself. These two
clusters are shown in Figures 4 and 5, respectively. They
consist of 47 and 57 tetrahedra derived from, respectively,
three and four fused icosahedra. The two clusters are of, re-
spectively, D3h and Td symmetry. They are referred to in this
paper, respectively, as the polygon-centered cluster and the
cell-centered cluster. The term cell used here follows the
mathematics literature and is used in this case to describe
the central tetrahedron of the cluster, the term tetrahedral-
ly-centered cluster being something of a mental conundrum
in the description of a tetrahedrally based structure. Poly-
gon-centered refers to the equilateral triangle, a polygon, at
the cluster center.

Figure 1. a) Six equilateral triangles joined together into a regular planar
hexagon and either b) twenty face-sharing regular tetrahedra joined into
an icosahedral shape with crevasses or c) twenty slightly-irregular tetra-
hedra fused into a regular icosahedron.

Figure 2. a) Five face-sharing regular tetrahedra joined into a fivefold
ring with crevasses or b) five slightly-irregular tetrahedra fused into a D5h

face-sharing ring of tetrahedra.

Figure 3. A pair of filled icosahedra fused into a single cluster, the edge-
centered tetrahedral cluster. Single vertices from each icosahedron, indi-
cated in red, come together to form an edge, shown in brown in the
upper left inset. The cluster is of D5h point group symmetry. The shared
volume shown in the center of panel b) is the same fused ring of tetrahe-
dra shown (from another perspective) in Figure 2b. The full cluster
shown here consists of 35 face-sharing tetrahedra.
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A unified view for tetrahedral clusters : In the previous sec-
tion we have examined four different tetrahedral clusters,
clusters whose centers are a vertex, an edge, a triangular
polygon, or a tetrahedral cell, respectively. All central atoms
in all the four clusters lie in the center of icosahedra. We
now show an exact connection between these clusters, a con-
nection best understood by the following analogy. In
Figure 6 we show three different planar arrangements of
atoms: the first has a single pentagon with an atom at its
center, the second has two such filled pentagons around a
central edge, while the third has three filled pentagons built
around a common polygon. These three fused pentagonal
arrangements can be viewed as 2D analogs of the four tetra-
hedral clusters discussed in the previous section.

The crux to the analogy is that while as 2D figures, the
vertex-, edge-, and polygon-centered arrangements of
Figure 6 are all distinct from one another, as the lower
panel of this Figure shows, they can also be viewed as ortho-

graphic hemispheric projections of the same three-dimen-
sional cluster (an orthographic hemispheric projection is a
standard orthographic projection where one explicitly limits
oneself to just one hemisphere). This 3D cluster is the icosa-
hedron, one of the most symmetric 3D Platonic solids.

In exactly the same manner, the vertex-, edge-, polygon-,
and cell-centered tetrahedral clusters can be shown to be or-
thographic hemispheric projections of the same 4D struc-
ture, a 4D Platonic solid.[8,21,22, 45,46,53] In making orthographic
hemispheric projections, one needs to decide whether atoms
at the equator itself should be included in the projection. As
we discuss in specific detail in the Appendix, in this paper,
4D to 3D orthographic hemispheric projections do not in-
clude equatorial vertices. There are six 4D Platonic solids in
total. Our interest is with one of the most symmetric 4D
Platonic solids, the 600-cell.[54] The 600-cell contains 600 per-
fect tetrahedra and 120 vertices, all equidistant from the
same 4D center. Each of these 120 vertices lies in the center
of a perfect icosahedron. With twelve vertices to each icosa-
hedron, the 600-cell contains 720 edges (720= (120 �12)/2).
Every vertex, edge, face, tetrahedra, and icosahdedra are
the same as all other vertices, edges, faces, tetrahedra, and
icosahedra. The 600-cell is therefore Platonic.

In Figure 7 we show four 3D views of the 600-cell (see
Supporting Information for the explicit 600-cell projection
matrices). As this Figure shows, the central portion of the
four views corresponds to the four different tetrahedral clus-
ters discussed in the previous section. As this Figure also
shows, however, these four tetrahedral clusters are sur-
rounded by additional atoms. These additional atoms cap
the triangular faces, thus generating further tetrahedra. For
vertex-centered clusters it is traditional to include among
the additional atoms those which cap vertices as well as
faces. The vertex- edge-, polygon-, and cell-centered projec-
tions have, respectively, 45, 44, 50, and 54 atoms. Of the four
cluster types, the vertex- and cell-centered clusters are best
known. The former is termed the Bergman cluster while the
latter is best known in g-brass, Cu5Zn8.

[11,22, 32,55, 56]

Figure 4. Three filled icosahedra fused into a single cluster, the polygon-
centered tetrahedral cluster. Edges from each icosahedron, indicated by
pairs of red-colored vertices, come together to form an equilateral trian-
gle, a polygon, shown in brown in the upper left inset. The cluster is of
D3h point group symmetry and consists of 47 face-sharing tetrahedra.

Figure 5. Four filled icosahedra fused into a single cluster, the cell-cen-
tered tetrahedral cluster. Faces from each icosahedron, indicated by tri-
angles of red-colored vertices, come together to form a tetrahedron, a
cell, shown in brown in the upper left inset. The cluster is of Td point
group symmetry and consists of 57 face-sharing tetrahedra.

Figure 6. 2D a) single filled-, c) two edge-centered fused-, and e) three
polygon-centered fused-pentagons forming the projected shapes of a 3D
icosahedron orthographically projected down, respectively, a b) vertex,
d) edge, and f) face. While there is a one-to-one correspondence between
vertices in the center portion of c) and d) as well as the center portion of
e) and f), one would have to restrict oneself to just a single hemisphere
of the orthographic projection, b), to exactly coincide with the single-
filled pentagon in a).
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We will call the central portion of the vertex-, edge-, poly-
gon-, and cell-centered projections, the single filled, pair of,
trio of, and quarto of fused icosahedra, respectively, the
inner shells of the clusters. The atoms capping the triangular
faces of this inner shell will be termed the outer shell. For
example, in the g-brass structure it is traditional to focus on
just the inner shell while for the Bergman cluster inner and
outer shells are often viewed together. It should be noted
that the vertex-, edge-, polygon-, and cell-centered projec-
tions are the only four 4D to 3D projections which corre-
spond to isolated special points of higher symmetry. In a 3D
globe to a 2D map projection, specifying the center of the
projection, typically in this case a pole, completely specifies
the projection itself. The same holds in the 4D to 3D projec-
tion. The symmetry of the “pole” taken in the 4D 600-cell
to 3D projection therefore determines the symmetry of the
projected 3D object. As the 600-cell is a 4D Platonic solid,
there are only four high symmetry special points: they are,
respectively, at the center of a vertex, an edge, a face or a
cell, that is, they are the four projections shown in Figure 7.

While the 600-cell consists of 120 vertices, the four projec-
tions contain less than half the original 120 atoms. This re-
duction is a consequence of the 4D to 3D hemispheric pro-
jection. We can understand this reduction by the following
analogy. When projecting a 3D sphere, the globe, onto a
two-dimensional filled circle, a map, we project only half the
sphere at a time. Simple projected maps of the Earth typi-
cally show just half the surface of the globe, typically either
the Northern or Southern hemispheres. In our case, 3D
hemispheric projections of it show just half of the 4D 600-
cell, roughly 60 of the 120 vertices.

There is a further complication caused by the projection.
It is in the region near the equator. In 3D, the equator is de-
fined as the 2D circle which is projected the farthest away
from the central pole. Euclidean features near the equator
of a global map are always highly distorted. In 4D, the equa-
tor is the 3D sphere which projects furthest away from the
pole.

Just as in the globe-to-map projection, geometrical fea-
tures near the 4D equator are highly distorted upon projec-
tion into 3D space. Tetrahedra near the equator are unrea-
sonable in shape (they are considerably flattened). Such flat-
tened tetrahedra cannot be found in real 3D crystals and are
therefore not included in our projected images. We there-
fore peel away these outermost tetrahedra from our hemi-
spheric projected images; projected clusters therefore range
from 44 to 54 atoms in size.

The edges of the 600-cell prove to be of significant chemi-
cal relevance. They can be the metal�metal bonds. But they
serve other functions. First recall that the 600-cell is Platon-
ic. In the original 600-cell the 720 edges are all symmetrical-
ly equivalent to one another. These 720 edges prove to
define 720 fivefold rotations, all of which belong to the
same class of the 600-cell point group. Relevant to us, these
720 4D edges all project into 3D incipient pseudo-fivefold
rotational axes.

In the vertex-, edge-, polygon-, and cell-centered tetrahe-
dral clusters there are 204, 193, 234, and 256 bonds, respec-
tively. All of these edges retain, to some extent, symmetry
aspects of the original 600-cell. But certain edges retain the
symmetries to a much greater degree. An analogy to 2D
projections of the 3D icosahedron helps illustrate this point.
In an icosahedron, the triangular faces of the icosahedron
are equilateral triangles. In Figure 6 we showed three differ-
ent projected views of this icosahedron. As this Figure
shows, those triangular faces closest to the center of the pro-
jection, retain to the greatest degree their threefold symme-
try: they look most like equilateral triangles.

In a similar manner, those edges which lie closest to the
center of the 3D tetrahedral-cluster projections retain the fi-
vefold rotational symmetry of the original 4D 600-cell. We
show this in Figure 8.

In this Figure we show the diffraction image along the
most central edge for, respectively, the vertex-, edge-, poly-
gon- and cell-centered projected 600-cell. As this Figure
shows, there is discernible pseudo-fivefold diffractions along
each of these edges. We further show in Figure 9 the diffrac-
tion image corresponding to the second-most central edge
of the edge-centered cluster. For this cluster, this less central
edge shows as well, albeit less markedly, pseudo-fivefold ro-
tational symmetry. To generate the diffraction images for
Figures 8 and 9, Dirac delta functions were placed at the
atomic or polyhedral coordinates (d ACHTUNGTRENNUNG(r�Ri)), where r is the
position (x,y,z) and R is the ith atomic coordinate). In the
case of the polyhedra, all Dirac delta functions were of unit
volume and in the case of actual atomic clusters the volumes
were weighted by the atomic number, wi. The positions of
the polyhedra were chosen to mimic intermetallic intera-
tomic distances. The Fourier Transform was taken over the
sum of the Dirac functions f(k) = e�2pik·r �wid ACHTUNGTRENNUNG(r�Ri)dr.

Only the most central cluster edges correspond to
pseudo-fivefold rotation axes, but less central cluster edges
are also significant. Once we turn to real tetrahedral crystal
structures, we will find the directions of the central edges
point in the same direction as the principal diffraction

Figure 7. a) Vertex-, b) edge-, c) polygon-, and d) cell-centered hemi-
spheric projection of the 4D Platonic solid, the 600-cell. The figures
divide the projected 600-cell into inner- and outer-shells shown, respec-
tively, as polyhedra and ball-and-stick figures. Inner shell colors refer to
colors used in Figures 3–6. a) is the Bergman cluster. d) is found in g-
brass.
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peaks. Furthermore the d-spacing of these strongest diffrac-
tion peaks are roughly the same as the average bond
lengths.

In general, the edges which are shared by more than one
of the inner-shell fused icosahedra will be found to lead to
the strongest diffraction. But significant intensity diffraction
peaks will be derived from all inner shell edges. We show
this hierarchy of edges for each of the four cluster types in
Figure 10 going from central edges which display pseudo-fi-
vefold diffraction symmetry (second column in the figure),
to shared inner-shell edges which correspond to strongly dif-
fracting directions (third column), to the remaining inner-
shell edges which correspond to less strong, but still signifi-
cant, diffraction peaks (fourth column).

In describing these edges, it is useful to introduce a uni-
form nomenclature. In Figure 10, we can see that the cell-
centered inner shell has four symmetry inequivalent sites.
These sites are traditionally termed Inner Tetrahedron (IT),
Outer Tetrahedron (OT), Octahedron (OH), and Cuboocta-
hedron (CO). Of these four sites, only the IT, OT, and OH
sites are shared by more than one of the inner-shell fused
icosahedra. Those edges between IT, OT, and OH sites will
prove to be the most strongly connected to the most intense
diffracting reflections. And among this set of sites, the edges
which correspond to the most discernable pseudo-fivefold
symmetry are the most centrally located, the six IT–IT
edges.

We can specify analogous nomenclatures for the vertex-,
edge-, and polygon-centered clusters. The vertex-centered
inner shell has two central symmetry inequivalent sites, the
Cluster Center (CC) and the Inner Icosahedron (II) sites.
For the edge-centered inner shell there are four symmetry
inequivalent sites: Central Edge (CE), Pentagon (PG), Pen-
tagonal Prism (PPr), and Outer Line (OL). Finally for the
polygon-centered cluster, the central symmetry inequivalent
sites are Inner Line (IL), Inner Triangle (ITr), Inner Prism
(IPr), Outer Prism (OPr), and Hexagon (HG).

In the case of the vertex-centered cluster, the cluster is so
symmetric that the entire projected 600-cell has only four
symmetry inequivalent sites. Besides the CC and II sites, the
cluster outer shell contains just two more site types, OI, the
Outer Icosahedron and DH, the Dodecahedron. Less useful

Figure 8. Diffraction pattern of a single a) 45-atom vertex-, b) 44-atom
edge-, c) 50-atom polygon-, and d) 54-atom cell-centered cluster shown
down an CC–II, CE–CE, ITr–ITr, and IT–IT cluster edge, respectively.
Pseudo-fivefold rotational symmetries are seen in each of these diffrac-
tion patterns as 10-fold pseudosymmetric rosettes. Central cluster edges
were chosen with average distances of 2.2 �, corresponding to a value
near the dhkl spacings in actual metal crystal structures, see Tables 1–5
and 7–11.

Figure 10. Site labeling scheme as well as representative edges for the
inner shells of the different types of centered tetrahedral packing. First
through fourth rows are for, respectively, vertex-, edge-, polygon-, and
cell-centered clusters. First column: color-coded illustrations of the site
labeling scheme (full site names given in text); second column: edges
which correspond to pseudo-fivefold rotational axes; third column: to-
gether with the second column edges, the edges which correspond to the
strongest diffraction peaks (see Section on cluster edges and diffraction
and in particular Figure 24); and fourth column: the remaining edges
whose corresponding diffraction peaks have significant, but not the stron-
gest, intensities.

Figure 9. Diffraction pattern of a single 44-atom edge-centered cluster
shown down its PG–PG cluster edge. Pseudo-fivefold symmetry is only
somewhat recognizable. Interestingly, this diffraction pattern resembles
the diffraction pattern of edge-centered cluster structures, shown in
Figure 12, lower right, and 22, lower right, where pseudosymmetry is
more obviously present.
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but still sometimes in need of consideration are the outer
shell sites in the remaining clusters. For edge-centered clus-
ters we have the Outer Pentagon (OPg), Elongated Pentag-
onal prism, (ElPp) and Flattened Pentagonal prism (FlPp).
For polygon-centered clusters the outer shell has four sym-
metry inequivalent sites: Hexagonal Prism (HgPr), Elongat-
ed Prism (ElPr), Flattened Prism (FlPr), and Outer Triangle
(OTr). Finally for the cell-centered cluster the three sites are
geometrically the External Tetrahedron (ExT), the Lesser
Truncated tetrahedron (LsTt), and the Greater Truncated
tetrahedron (GrTt).

In considering atoms which lie on the central molecular
axis, we distinguish those central atoms which are bonded to
symmetry equivalent atoms versus those central atoms
which are not bonded to symmetry equivalent atoms. We
term these two cases, respectively, edge and line sites, as in
versus CE for Central Edge CL for Central Line. Where
two letter designations are used for simple polyhedra and
polygons, the second letters of the designation are, respec-
tively, H for hedron and G for gon. It should be noted that
the HG label has been applied to a hexagon of D3h rather
than D6h symmetry. In the case of the outer shell of the cell-
centered cluster the terms lesser and greater truncated tetra-
hedron refer to the degree of truncation present in the
specified cluser. Finally where the type of prism is not speci-
fied, it is assumed to be a triangular prism.

Crystalline examples of the four types of tetrahedral clus-
ters : Our interest is in finding crystals which preserve as
much as possible of the above symmetries. The vertex-,
edge-, polygon- and cell-centered clusters are of Ih, D5h, D3h,
and Td symmetry, respectively. These four point groups are
maximally compatible with, respectively, the four space-
group-allowed point group symmetries, Th, C2v, D3h and Td,
point groups found in cubic, orthorhombic, hexagonal, and
cubic crystals, respectively.

Not only should the space group have the above point
group symmetries, there need be special sites within the unit
cell, Wyckoff positions, which have these exact symmetries.
For example, for the vertex-centered cluster, the Wyckoff
site symmetry Th or m3̄ is required. Possible space groups
are therefore Pm3̄, Fm3̄, Im3̄, Pm3̄n, and Fm3̄c. For cell-
centered clusters, we need Wyckoff site symmetry Td or
4̄3m. Allowed space groups are P4̄3m, F4̄3m, I4̄3m, Pn3̄m,
Fm3̄m, and Fd3̄m.

Crystalline examples of these clusters are found in
Al6Mg11Zn10, a 1:1 quasicrystalline approximant, and
Pt5Zn21,

[57,58] a 2 � 2 � 2 superstructure of the g-brass struc-
ture. Their unit cells, along with one example of the corre-
sponding tetrahedral cluster, are shown in Figure 11. They
crystallize in Im3̄ and F43̄m symmetry.

In exactly the same manner we can consider edge- and
polygon-centered tetrahedral clusters. The list of space
groups with C2v Wyckoff site symmetry is too long to list
here. For the polygon-centered cluster with D3h, either of
6̄m2 or 6̄2m symmetry, the list of possible space groups in-
clude P6̄m2, P6̄2m, P6/mmm, P63/mcm, and P63/mmc. Nei-

ther rhombohedral nor cubic crystal space groups are com-
patible with Wyckoff site D3h symmetry. Examples of crystal
structure with edge- or polygon-centered tetrahedral clusters
are the Mn10Al29

[59] decagonal quasicrystalline approximant
and the EuSr2Mg13

[60] structure. Their structures, with one
example each of the corresponding tetrahedral cluster, are
shown in Figure 11. These two crystals crystallize in, respec-
tively, the Pnma and P63/mmc space groups.

Not only do these crystal structures show clear examples
of the vertex-, edge-, polygon-, and cell-centered tetrahedral
packing, they show as well marked pseudo-fivefold diffrac-
tion symmetry. The pseudo-fivefold diffraction images are
themselves in the directions of the most central edges of the
respective clusters. For the cubic Pt5Zn21 and hexagonal
EuSr2Mg13 structures, the innermost cluster edges link, re-
spectively, IT to IT atoms, the h110i real lattice directions,
and ITr to ITr atoms, the real space h100i or equivalently
the reciprocal space {21̄0} directions.

In Figure 12 we therefore show the diffraction images or-
thogonal to the cubic [11̄0] and hexagonal [100] directions.
Our interest here is only with the strongest diffraction
peaks. Within the Cerius2 suite of programs,[61] we can filter

Figure 11. Al6Mg11Zn11, Mn10Al29, EuSr2Mg13, and Pt5Zn21 unit cells. Ele-
ments are color-coded: mixed sites are denoted by the corresponding
color mixtures: blue-green and green-red mixtures appear as turquoise
and brown, respectively. For each structure, a single vertex-, edge-, poly-
gon-, and cell-centered cluster is shown. The inner shell is represented as
a filled polyhedron. Atoms at the centers of the polyhedra determine the
colors of the polyhedral faces. Outer shell is shown in a ball-and-stick
format.
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out weaker peaks by applying an Intensity Factor. With this
filter, as Figure 12 shows, both crystals show marked rings of
tenfold pseudosymmetric diffraction in the above specified
directions. Such rings correspond to pseudo-fivefold rota-
tional symmetry. The Pt5Zn21 and EuSr2Mg13 show, respec-
tively, one and two such 10-fold rings. Pt5Zn21 has an inner
ring and EuSr2Mg13 has inner and outer rings whose dhkl, re-
spectively, are approximately 2.1 and 2.7/1.7 �.

In the case of the edge-centered cluster-based structure
Mn10Al29, the most central edge connects the two CE sites
to one another. As Figure 12 shows, this CE-CE direction,
which in Mn10Al29 runs in the [010] real space lattice direc-
tion, has excellent pseudo-fivefold symmetry associated with
it.

For edge-centered crystal structures, even the second-
most central edge lies sufficiently near the projected-cluster
center, a kind of pseudo-fivefold diffraction ring can be ob-
served. These second-most central edges connect PG to PG
sites. There are five different PG–PG directions, only one of
which is orthogonal to a numerically simple real space direc-
tion. For Mn10Al29 one of the five PG–PG edges lies in the
[001] real space direction, the other four PG–PG directions
corresponding to 72 and 1448 rotations of this direction. As
Figure 12 shows, pseudo-fivefold diffraction along this axis is

significantly distorted, but its
relation to the better CE–CE
pseudo-fivefold diffraction sym-
metry, also shown in this figure,
is evident.

For diffraction images or-
thogonal to less simple real-
space directions, relatively few
diffraction reflections are exact-
ly orthogonal to real-space lat-
tice directions. Standard diffrac-
tion images that show all dif-
fraction reflections orthogonal
to a given real space lattice di-
rection (this real-space direc-
tion is called the zone axis) fail,
therefore, to capture pseudo-
symmetry properly.

It is easiest in such cases to
generate somewhat artificial
diffraction images. We do so by
choosing a crystallite size,
where the crystallite center is
chosen to be one of the four
types of tetrahedral clusters.
We choose crystallites which
are 30 � in diameter, centered
around a high symmetry point
of the crystal structure. The
small size leads to significant
dispersion around each (hkl) re-
flection. Contour maps orthog-
onal to a given real-space direc-

tion therefore can capture the intensity of reflections which
do not exactly lie within the orthogonal plane.

Such crystallite diffraction images can be used to assess
the pseudo-fivefold symmetries. We consider the vertex-clus-
ter based Al6Mg11Zn11 structure. In this structure we choose
a zone axis in the h503i real-space directions, directions
which correspond in real space to CC–II edges. Figure 13

Figure 12. Diffraction pattern for the cell-centered Pt5Zn21, polygon-centered EuSr2Mg13, and edge-centered
Mn10Al29 crystals along the indicated directions. For Mn10Al29, the [0 1 0] and [0 0 1] directions correspond,
respectively, to CE–CE and PG–PG. The latter pattern shows less-marked pseudo-fivefold symmetry but its
relation to the formers pseudo-fivefold symmetry is evident. Cerius2 Intensity Factors: 0.15 (Pt5Zn21); 0.04
(EuSr2Mg13); 0.04 (Mn10Al29, [0 1 0]); 0.05 (Mn10Al29, [0 0 1]) A comparison of diffraction images with uni-
form intensity factors is shown in Supporting Information.

Figure 13. Diffraction pattern for a cluster-centered 3.0 nm diameter
spherical crystallite of the vertex-centered Al6Mg11Zn11 structure shown
along the [3 5̄ 0] direction. Only peaks whose peak height is 0.27 times
the most intense peaks are shown.
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shows the marked pseudo-fivefold symmetries with respect
to these zone axes.

Smaller crystalline examples : The four crystals considered in
the previous section, Al6Mg11Zn11, Mn10Al29, EuSr2Mg13, and
Pt5Zn21, have Pearson symbols of cI162, oP156, hP96, and
cF416, respectively. Based on the Wyckoff site symmetry of
their corresponding space groups these four crystals can
have two, four, two, and sixteen tetrahedral clusters, respec-
tively, the cluster edges of which correspond to chemical
bonds. As the vertex-, edge-, polygon-, and cell-centered tet-
rahedral clusters have 45, 44, 50, and 54 atoms, respectively,
the tetrahedral clusters can account for, 90, 176, 100, and
864 potential sites, respectively.

In the previous examples, the number of atoms in a unit
cell are therefore always within a factor of two of the
number of atoms in the tetrahedral clusters themselves. In
this section we turn to tetrahedral cluster crystals with just
tens of atoms in their unit cells, unit cells one-quarter to
one-tenth the size of the previous unit cells. These small
unit cells nonetheless fashion centered clusters the same size
as were found previously. Unit cells with just tens of atoms
must lead to clusters forty to fifty atoms in size.

In one case noted below, a cubic crystal with a primitive
unit cell of just six atoms generates a full inner-shell cell-
centered 26-atom cluster as well as over half the outer shell.
In this, as well as the other examples, atoms in the inner
shell of one cluster belong to outer shells, and even the
inner shells, of neighboring clusters. As may be expected,
while some of our examples are able to create full inner-
and outer-shelled tetrahedral clusters, in other examples, the
tetrahedral clusters are imperfect: sites in the outer shell are
found missing.

Small-sized unit cells for the vertex- and edge-centered
clusters include Mg2Zn11

[62] (Pm3̄, cP39) and Cd2Cs5Tl11
[63]

(Amm2, oA36), with, respectively, one and two clusters per
unit cell. The unit cells in both cases are smaller than a
single centered cluster. Illustrations of these structures are
shown in Figures 14 and 15. In both these examples, both
inner and outer shells are fully present. With their small
unit cell sizes, their diffraction images, see Figures 16 and
17, show only partially discernible pseudo-fivefold diffrac-
tion symmetry.

Small-celled examples of the polygon-centered cluster in-
clude both the ubiquitous hexagonal Laves phase MgZn2

[64]

(hP12) and the slightly larger Co2Al5 (hP28)[65,66] structure.
As in the later section of this paper, we will consider the
Cu–Cd phase diagram, we illustrate here CdCu2, a MgZn2-
type structure and Cu3Cd10, a Co2Al5-type system. Illustra-
tions of their unit cells showing their polygon-centered tetra-
hedral clusters are given in Figure 15.

In CdCu2, the full inner shell of the cluster is present. But
with only twelve atoms in the primitive unit cell, it proves
impossible to re-create fully the complete outer shell. Of the
four outer shell sites, the ElPr, FlPr, and HgPr are present
while the OTr is not. Similarly in Cu3Cd10, while the full
inner shell is present, only the ElPr and OTr sites are pres-
ent in the outer shell. Nonetheless, as Figure 16 shows, their
diffraction images have excellent pseudo-fivefold symmetry.

The situation for cell-centered clusters is more complicat-
ed. The issue is not that cell-centered tetrahedral clusters
are rare; they are in fact quite common. Both the ubiquitous
Laves phase MgCu2 (cF24)[67] and the important g-brass
structure (cF52), a structure found in Cu5Cd8,

[68] are based
on cell-centered tetrahedral clusters. Figure 18 shows both
contain the full inner shell cell-centered cluster. g-brass and
MgCu2 contain, respectively, the full and over half the outer
shell of this same cluster. The complication is not in their
structures but their diffraction images.

In Figure 19 we show diffraction images for three differ-
ent noble-metal-rich MgCu2-type structures, YNi2,

[69, 70]

Figure 14. Mg2Zn11 unit cell. Elements are color-coded and a single
vertex-centered cluster is shown. Inner and outer shells are represented,
respectively, in filled-polyhedron and ball-and-stick formats. The polyhe-
dral faces are blue as a Zn atom lies at the cluster center.

Figure 15. Cd2Cs5Tl11, Cu3Cd10 and CdCu2 unit cells. Elements are color-
coded. For each structure a single edge- or polygon-centered cluster is
shown. The inner shell is represented as a filled polyhedron, whose face
is colored according to the central site element type. Outer shell is shown
in a ball-and-stick format. Cu3Cd10 and CdCu2 outer shells are incom-
plete: to aid the eye OTr or FlPr and HgPr sites are joined by thin lines.
Where necessary for clarity, the unit cell is therefore indicated with
dotted lines. CdCu2 has the MgZn2 structure type.
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AuYNi4,
[71] and ScNi2.

[72] (We choose these three as repre-
sentative examples of noble-metal-rich Laves phases, noble
metals being one focus of this paper.) For the first two, im-
perfect pseudo-fivefold rings composed of members of the
{222}, {311}, and {220} sets of reflections are evident. In the
third, ScNi2, the {220} peak is absent, while {400} is now
present and the sense of the pseudo-fivefold symmetry is
lost. Chemically it seems evident that scandium and yttrium
play similar roles in, respectively, YNi2 and ScNi2, but dif-
fraction images depend on total vs. valence electron densi-
ties and Y and Sc differ significantly from one another. This
result indicates a shortcoming in using diffraction images to
elucidate structural stability trends.

The situation with the diffraction pattern of g-brass struc-
ture is even more complex. It can be understood if we refer
back to the Pt5Zn21 structure, a 2 � 2 �2 superstructure of g-
brass. While g-brass contains two symmetry equivalent poly-
gon-centered tetrahedral clusters in an I-centered cell, the
Pt5Zn21 structure has sixteen such clusters based on four
crystallographically different polygon-centered clusters in a
face-centered cell.

As shown previously, the Pt5Zn21 has pseudo-fivefold sym-
metry in the h110i directions. Connected to one another by
a pseudo-fivefold rotation along these directions are the
(660), (822), and (555) reflections. In going from the Pt5Zn21

super-structure to the parent g-brass type, the real unit cell
halves in each axis direction as do the (hkl) indices. The
Pt5Zn21 (660), (822), and (555) reflections therefore corre-
spond to the g-brass (330), (411), and (21

22
1
22

1
2) reciprocal

space vectors. Of these latter three directions, only the first
two are composed of whole number indices and can corre-
spond to g-brass reflections. Of the four whole-numbered
peaks closest to the (21

22
1
22

1
2) direction, that is, the (222),

(322), (332), and (333) directions, only the (222) and (332)
peaks are observed; (333) and (322), both having h+ k+ l=

Figure 16. Diffraction pattern for the edge-centered Cd2Cs5Tl11 and polygon-centered CdCu2 and Cu3Cd10 crystals along the [1 0 0] direction. For the
latter two crystals, pseudo-fivefold symmetry is clear, in the former system the pseudosymmetry is less-marked. Less evident pseudosymmetry is often
found in tetrahedral-packed crystals with small unit cells. Cerius2 intensity factors: 0.100 (Cd2Cs5Tl11); 0.040 (CdCu2); 0.040 Cu3Cd10. A comparison of
diffraction images with uniform intensity factors is shown in the Supporting Information.

Figure 18. AuYNi4 and Cu5Cd8 unit cells. Elements are color-coded. For
each structure a single cell-centered cluster is shown. The inner shell is
represented as a filled polyhedron, whose face is colored according to the
central site element type. While Cu5Cd8 has the full outer shell, AuYNi4

has only the ExT and GrTt outer-shell sites. The AuYNi4 is related to the
MgCu2 structure type, where Au and Y lie in the latter Mg sites. Cu5Cd8

has the g-brass structure.

Figure 17. Diffraction pattern for a cluster-centered 1.5 nm diameter
spherical crystallite of the vertex-centered Mg2Zn11 structure shown
along the [3 2̄ 0] direction. The weak intensity of the {2 1 3} reflection
in this Figure is the result of this reflection�s considerable distance from
the plane normal to the [3 2 0] direction. Only peaks whose peak height
are �0.10 times the most intense peaks are shown.
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2n+ 1, are systematically absent in the I-centered g-brass
structure.

In the case of g-brass, five-fold pseudo-rotations along the
h110i directions therefore lead to four symmetrically equiva-
lent sets of reciprocal space vectors, {330}, {411}, {222}, and
{332}. (A fifth, the {422}, will also prove equally significant
in a later section of the paper.) Figure 20 shows the diffrac-
tion pattern orthogonal to the h110i direction for Cu5Cd8, a
g-brass structured member of the Cu–Cd phase diagram. As
anticipated, these four sets of reflections are the four princi-
pal sets present in this diffraction pattern. However, al-
though we can understand that this diffraction image as
being derived from pseudo-five-fold symmetry, as this
Figure shows, the pseudosymmetry itself is not easy to see.

Larger crystalline examples : So far we have considered crys-
tals whose unit cells are either roughly the same size or are
even smaller than the size of individual tetrahedral clusters.
We can, however, consider unit cells where the Pearson

symbol denotes a unit cell significantly greater in size than
can be accounted for by potential tetrahedral cluster sites.
We could suppose that such larger crystalline structures are
projections of four-dimensional objects larger than the 600-
cell.

As we and others have shown, these larger objects are
often 4D quasicrystals,[43,47] but these quasicrystals have the
same 4D point group symmetry as the 600-cell itself. In such
cases, the fivefold rotational symmetry corresponding to the
720 edges of the 600-cell, retain their character as fivefold
pseudosymmetry axes in their large crystal unit cell 3D pro-
jections. In other words, even in very large 3D crystal struc-
tures, we do not have to delve beyond the 600-cell symme-
tries in order to understand 3D pseudosymmetries. Just as a
cube or an octahedron can be used to understand the rota-
tional symmetries of 3D cubic-unit-celled crystals such as
rock salt or perovskite, the 600-cell can be used to under-
stand the point group symmetries of 4D quasicrystals.

In looking for examples of such phases, we look for clus-
ters which have the same point group symmetry as the pro-
jected 600-cell and whose diffraction images show the same
pseudo-fivefold symmetry axes. In this section we consider
just the inner shell of the four centered tetrahedral crystals,
this shell being enough to define the overall point group
symmetry. We relax the previous restriction that these inner
shells have chemical bond edge lengths. Indeed, tetrahedral
edge lengths longer than a chemical bond are more in keep-
ing with these crystals� large unit cells.

Examples of such larger crystal structures are the
SiMn6Pd23Al70,

[73] Pd3Al7,
[74] MnAl4,

[75,76] and Cd3Cu4 struc-
tures with Pearson symbols of cP597, oP328, hP574, and
cF1124. These unit cells are roughly double the size of the
original crystals discussed in this paper. Their crystal struc-
tures and their respective vertex-, edge-, polygon-, and cell-
centered tetrahedral clusters are shown in Figure 21. Shown
in Figures 22 and 23 are their corresponding diffraction
images along, respectively, the inner-shell central-edge CC–
II, CE–CE, ITr–ITr, and IT–IT directions.

Figure 19. Diffraction pattern for cell-centered YNi2, AuYNi4 and ScNi2 crystals along the [1 1̄ 0] direction. All three structures are related to the
MgCu2 Laves structure. Pseudo-five-fold symmetry is clear in the first two structures but not the third. Cerius2 intensity factors: 0.040 (YNi2); 0.030
(AuYNi4); 0.040 (ScNi2). A comparison of diffraction images with uniform intensity factors is shown in the Supporting Information.

Figure 20. Diffraction pattern for the g-brass-type Cu5Cd8 along the
[1 1̄ 0] direction. Five-fold rotations applied to either the (3 3 0) and
(4 1 1) peaks would result in a (21

22
1
22

1
2) peak, a direction not permitted

in diffraction. The disallowed (21
22

1
22

1
2) location is shown as a blue open

circle (see Supporting Information). Diffraction occurs instead at (2 2 2)
and (3 3 2), the two closest locations where diffraction is symmetry al-
lowed. Cerius2 intensity factor is 0.45.
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Not surprisingly, both the vertex-centered cluster
SiMn6Pd23Al70 structure and the cell-centered cluster Cd3Cu4

structure, with their large unit cells, reveal excellent pseudo-
fivefold diffraction. The polygon-centered MnAl4 shows an
extra principal spot in its inner-most ring, the {800} set of re-
flections. In the next two sections we explain the origin of
this spot. As we shall see, this extra set of reflections is a
direct consequence of pseudo-fivefold symmetry. Finally, in
the edge-centered cluster Pd3Al7 structure, the CE–CE and
one of the PG–PG edges run in, respectively, the [001] and
[010] directions. While the pseudo-fivefold symmetric nature
of the former pattern is the more marked, the relation be-
tween the two patterns is evident.

Cluster edges and diffraction : Central edges in the vertex-,
edge-, polygon-, and cell-centered tetrahedral clusters are
pseudo-fivefold rotation diffraction symmetry axes. But they
play an additional significant role in diffraction. This role
can only be understood if we recognize that tetrahedral clus-
ter edges can be used to define plane waves, and not just

any plane waves, but in fact the strongest diffracting plane
waves.

The plane waves defined by a cluster edge are plane
waves whose directions of travel are exactly the same as
given cluster edge bond-directions and whose wavelengths
can be deduced from the cluster edge bond lengths. Such
wavelengths must be deduced by taking into account not
just the actual cluster edge distances, but how these edges

Figure 21. Vertex-centered SiMn6Pd23Al70, edge-centered Pd3Al7, poly-
gon-centered MnAl4, and cell-centered Cd3Cu4 unit cells. Elements are
color-coded. Mixed sites are denoted by the corresponding color mix-
tures: green-red mixtures appear as brown. Only a few of the possible
tetrahedral clusters are shown. For SiMn6Pd23Al70, the illustrated cluster
contains both inner and outer shells; for the remaining cases only the
inner shell is illustrated. Due to the large unit cell sizes, chosen here are
clusters whose edges correspond to atoms spaced roughly t further apart
than regularly bonded metal atoms.

Figure 22. Diffraction patterns for the cell-centered Cd3Cu4, polygon-cen-
tered MnAl4, and edge-centered Pd3Al7 crystals along the indicated direc-
tions. For Pd3Al7, the [0 0 1] and [0 1 0] directions correspond, respec-
tively, to CE–CE and PG–PG. The latter pattern shows less-marked
pseudo-fivefold symmetry but its relation to the former�s pseudo-fivefold
symmetry is evident. Cerius2 intensity factors: 0.040 (Cd3Cu4); 0.060
(MnAl4); 0.060 (Pd3Al7); 0.080 (Pd3Al7). A comparison of diffraction
images with constant intensity factors is shown in the Supporting Infor-
mation.

Figure 23. Diffraction pattern for a cluster-centered 3.0 nm diameter
spherical crystallite of the vertex-centered SiMn6Pd23Al70 structure shown
along the [3 5̄ 0] direction. Only peaks whose peak height are �0.29
times the most intense peaks are shown.
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orient themselves in optimal directions away from the
center of the projection. As Figure 24 shows, the actual edge
distances, shown in this Figure as a red barbell, are always
greater than the apparent wavelengths, shown as black
arrows. For example, we can consider a central cluster edge
of, respectively, the Al6Mg11Zn11 and Pt5Zn21 structures. The
former is a vertex-based and the latter a cell-based cubic
structure. Representative central edges are therefore, re-
spectively, II–II and IT–IT edges.

But, as we have found previously, all cluster edges are
pseudosymmetric to one another. If one II–II and one IT–
IT edge-based plane wave have strong constructive interfer-
ence, then all the other cluster edge-based plane waves will
also have similar constructive interference. Edges closest to
the cluster center, having the strongest pseudosymmetry,
will naturally follow this principle the best. This fact allows
for an unusual but powerful diffraction picture.

In this picture, we take the unusual step of constructing in
reciprocal space a cluster fully similar to the inner-most
shell of the real-space tetrahedral cluster. This inner-most
shell contains all the cluster edges which correspond to the
most constructive interference. But as this new cluster is
given in reciprocal space, these cluster edges are given in
the form of reciprocal space vectors. As such edges corre-
spond to strong constructively interfering plane waves, such
a Figure gives a pictorial representation of the strongest dif-
fraction peaks.

We form such reciprocal-space clusters using crystalline
reciprocal-space unit cell axes. In Figure 25 we do so for
SiMn6Pd23Al70 the largest unit-celled vertex-centered tetra-
hedral crystal structure discussed in this paper. The inner
shell of this structure consists of the CC site located at the
origin and the twelve II sites located on all even permuta-
tions of (�8 0 �5), a total of thirteen positions in all.

Between these thirteen vertices are forty-two edges:
twelve II–CC, and thirty II–II edges. As the Figure shows

the former edges form the {8 0 5} while the latter are made
up of the twenty-four {8 5 3} and the six {10 0 0}. Also rel-
evant to this discussion will be second nearest neighbor
pairs of sites, sites which lie on opposite sides of cluster tri-
angular faces. There are thirty second-nearest-neighbor
pairs of sites: the twenty-four {13 8 5} and the six {16 0 0}.
These second nearest neighbors may also be deduced from
the figure.

In Table 1, we show in descending order of intensity all
the strongest diffraction peaks for the SiMn6Pd23Al70 struc-
ture. This list is based on all diffraction peaks with dhkl up to
1.14 �, a value which corresponds to a CuKa1 2V value of
858. Remarkably, the five strongest peaks in this entire
structure are exactly the peaks which can be generated from
the inner shell of the reciprocal lattice tetrahedral cluster.

In many structures, the most strongly diffracting peaks are
(hkl) with low numerical indices, reflections like (100) or
(110). For tetrahedrally-packed structures, the strongest
peaks correspond to cluster edges. Taking into account re-
flection multiplicities, they form the two 10-fold rings shown
in Figure 22; they number 72 reflections in total.

Figure 24. Top row: 45-atom vertex-centered cluster from the
Al6Mg11Zn11 structure together with the plane wave corresponding to an
II–II edge. Bottom row: a 54-atom cell-centered cluster from the Pt5Zn21

structures together with the plane wave corresponding to an IT–IT edge.
Inner and outer shells are color coded. II and IT sites are shown in red.
Both plane waves exhibit strong constructive interference with the pro-
jected clusters.

Figure 25. Inner shell of a vertex-centered-projected reciprocal-space
600-cell using SiMn6Pd23Al70 reciprocal space axes as a coordinate basis.
The strongest diffraction peaks for the SiMn6Pd23Al70 crystal correspond
to first and second nearest neighbor vectors derived from this reciprocal
space cluster, see Table 1.

Table 1. Strongest (hkl) in SiMn6Pd23Al70.ACHTUNGTRENNUNG(h k l) dhkl [�][a] Multi-
plicity

Vertex–vertex
(k-space-coord.)

Vertex–vertex
(atom sites)

Inten-
sity[b]ACHTUNGTRENNUNG(8 0 5) 2.14[c] 12 ACHTUNGTRENNUNG(8 0 5)–(0 0 0) II–CC 100.0ACHTUNGTRENNUNG(10 0 0) 2.02 6 ACHTUNGTRENNUNG(5 8 0)–(5̄ 8 0) II–II 69.0ACHTUNGTRENNUNG(8 5 3) 2.04 24 ACHTUNGTRENNUNG(8 0 5̄)–(0 5̄ 8̄) II–CC 57.5ACHTUNGTRENNUNG(13 8 5) 1.26[d] 24 ACHTUNGTRENNUNG(8 0 5)–(5̄ 8̄ 0) II–II 56.5ACHTUNGTRENNUNG(16 0 0) 1.26 6 ACHTUNGTRENNUNG(8 0 5)–(8̄ 0 5) II–II 53.8ACHTUNGTRENNUNG(5 0 3) 3.47 12 ACHTUNGTRENNUNG(13 0 8)–(8 0 5) OI–II[e] 38.8ACHTUNGTRENNUNG(1 0 0) 20.21 6 – – 21.5ACHTUNGTRENNUNG(5 3 2) 3.28 24 – – 7.0

[a] Table includes dhkl of up to 1.14 �, corresponding to CuKa1 2q of 858.
[b] Intensity is based on powder diffraction data from the Cerius2 suite of
programs but is given per reflection, with neither atomic Debye–Waller
nor Lorentz-polarization factors included. [c] Inner shell edges have dhkl

ranging from 2.0 to 2.2 �. [d] Inner shell second nearest neighbors have
dhkl ranging from 1.2 to 1.3 �. [e] OI is located at {13 0 8} while DH is at
{8 8 8} and {13 5 0}.
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In this table first nearest neighbor edges and second near-
est neighbor pairs of capping atoms can be readily distin-
guished from one another. First and second nearest neigh-
bors have, respectively, dhkl ranging from 2.0 to 2.1 � and
1.2 to 1.3 �. As needs be in a tetrahedrally packed icosahe-
dral structure, these dhkl are approximately related to one
another by t, the golden mean, as is expected in all tetrahe-
drally packed icosahedral structures, t�2.04/1.26.

Examples of reciprocal-space diffraction clusters : In exactly
the same manner we can consider edge-, polygon-, and cell-
centered tetrahedral-structures. We begin with the highest
symmetry of the three remaining clusters, the cell-centered
type. In Table 2 we list the strongest reflections in the
Cd3Cu4 system, a phase with cell-centered clusters. Just as in
the SiMn6Pd23Al70 case, the strongest diffraction peaks are
found in two rings at, respectively, dhkl from 2.1–2.3 and 1.3–
1.4 �.

In Figure 26 and Table 2 we analyze these diffraction
peaks using a reciprocal-space tetrahedral cluster, like the
one used in the previous section but now cell-centered
rather than vertex-centered. Just as in the previous example,
we find all strong diffraction peaks correspond to vectors
connecting the reciprocal-space cluster first or second near-
est neighbors. First nearest neighbor reflections break into
four sets, the {8 8 0}, {11 11 3}, {7 7 7}, and {10 4 4} re-
flections, a total of 68 different reflections (68= 12+24+8 +

24). Second nearest neighbors break into another three sets,
the {14 14 0}, {11 11 11}, and {18 4 4} reflections, a total of
44 additional directions.

The diffraction intensity of the first nearest neighbor re-
flections will prove to be, in later sections of this paper, sig-
nificant for phase stability. Their intensities therefore merit
close examination. In Table 2 we see, in cell-centered clus-
ters, that IT–IT reflections are the strongest, closely fol-
lowed by the IT–OT reflections. By contrast both OT–OH
and IT–OH peaks are weaker.

If we recall the concept of the hierarchy of edges present-
ed earlier in this paper (Figure 10) we rationalize the more
intense character of the former pair of edges as they are
more centrally placed than the latter pair. But that noted,
Table 2 does present the reader with an additional puzzle. In
this table the OT–OH peaks are shown to have an intensity
three times stronger than the IT–OH peaks. From the point
of view of the hierarchy of edges, this is surprising as the
IT–OH and OT–OH edges are both roughly equidistant
from the cluster center.

Table 2 together with Figure 26 accounts for this threefold
variation. Figure 26 shows three OT vertices nearly eclipsing
three OH vertices. The three eclipsing pairs of OH and OT
sites are actually related to one another by exactly the same
reciprocal lattice vector, {7 7 7}, see Table 2. Apparently
edge reflection intensity is best understood on a per edge
basis. OT–OH edge reflection intensities therefore need to
be divided by three, as they are shared amongst three edges.
With this correction factor IT–OH and OT–OH edges are
nearly equal in intensity.

Our Cd3Cu4 system has reintroduced to us to the concept
of the hierarchy of cluster edges. It has further introduced
to us the concept of measuring intensity on a per edge
rather than the per reflection basis ordinarily used to report
single crystal diffraction data. Inner-most edges are the
strongest. On a per edge basis the more central IT–IT and
IT–OT edges are roughly four times as intense as either of
the less central IT–OH or OT–OH edges.

We turn now to MnAl4, a polygon-centered cluster struc-
ture. In Table 3 and Figure 27 we tabulate this structure�s
strongest diffraction peaks as well as a reciprocal-space pol-
ygon-centered cluster which can be used to interpret these
intensities. As this Table and Figure show, the strongest dif-
fraction peaks are found at dhkl of 2.0–2.2 and 1.2–1.3 �, cor-
responding to the inner shell of first and second nearest
neighbors of a reciprocal-space polygon-centered cluster.
First nearest neighbors are found in seven symmetry types
of reflections, a total of 74=2+12+ 6+6+ 24+12+12 di-
rections. Second nearest neighbors comprise five symmetry
types composed of 44= 6+12+ 2+12+12 directions.

Table 2. Strongest (hkl) in Cd3Cu4.ACHTUNGTRENNUNG(h k l) dhkl [�][a] Multi-
plicity

Vertex–vertex
(k-space-coord.)

Vertex–vertex
(atom sites)

Inten-
sity[b]ACHTUNGTRENNUNG(8 8 0) 2.29[c] 12 ACHTUNGTRENNUNG(4 4 4)–(4̄ 4̄ 4) IT–IT 100.0ACHTUNGTRENNUNG(11 3 3) 2.19 24 ACHTUNGTRENNUNG(4 4̄ 4̄)–(7̄ 7̄ 7̄) IT–OT 88.8ACHTUNGTRENNUNG(14 14 0) 1.31[d] 12 ACHTUNGTRENNUNG(7 7 7̄)–(7̄ 7̄ 7̄) OT–OT 80.6ACHTUNGTRENNUNG(7 7 7) 2.13 8 ACHTUNGTRENNUNG(7 7̄ 7)–(0 14 0) OT–OH 75.6ACHTUNGTRENNUNG(7 7 7̄)–(0 0 14) OT–OHACHTUNGTRENNUNG(7̄ 7 7)–(14 0 0) OT–OHACHTUNGTRENNUNG(11 11 11) 1.36 8 ACHTUNGTRENNUNG(4 4 4)–(7̄ 7̄ 7̄) IT–OT 67.5ACHTUNGTRENNUNG(18 4 4) 1.37 24 ACHTUNGTRENNUNG(4 4 4)–(14 0 0) IT–OH 34.6ACHTUNGTRENNUNG(10 4 4) 2.25 24 ACHTUNGTRENNUNG(14 0 0)–(4 4̄ 4̄) OH–IT 25.3ACHTUNGTRENNUNG(7 7 1) 2.60 24 – – 11.3ACHTUNGTRENNUNG(12 2 2) 2.10 8 – – 10.2

[a] Table includes dhkl of up to 1.14 �, corresponding to CuKa1 2q of 858.
[b] As in Table 1, intensity is given per reflection, with neither atomic
Debye–Waller nor Lorentz-polarization factors included. [c] Inner shell
edges have dhkl ranging from 2.1 to 2.3 �. [d] Inner shell second nearest
neighbors have dhkl ranging from 1.3 to 1.4 �.

Figure 26. Three most central sites (IT, OT, and OH) of a cell-centered-
projected reciprocal-space 600-cell using Cd3Cu4 reciprocal-space axes as
a coordinate basis. The strongest diffraction peaks for the Cd3Cu4 crystal
correspond to first and second nearest neighbor vectors derived from this
reciprocal-space clusters, see Table 2.
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As Table 3 shows, polygon-centered clusters contain more
equivalent edges than cell-centered ones. For MnAl4, three
equivalence relations present themselves: triads of IPr–IPr
edges point in the same direction as each other; IL–IPr
edges point in the same direction as pairs of IPr–OPr edges;
and finally pairs of IL–OPr edges point in the same direc-
tion.

With this understanding we turn to the first nearest neigh-
bor reflections in Table 3, the strong reflections with dhkl

ranging from 2.0 to 2.2 �. On a per edge basis, edges be-
tween ITr, IL, and IPr prove to be the most central; they
are uniformly the strongest. Their intensities range from 30–
45 %. Edges between one of these three more central sites
and the more exterior OPr site, on a per edge basis are

weaker and range from 14–18 %, a factor of two to three
weaker in intensity than the more central edges. We deduce
for the {8 0 4} reflection, which is based on one central IL–
IPr and two less central IPr–OPr edges, with a total intensi-
ty of 64 %, that the IL–IPr edge has a weight of 30–45 %
while the IPr–OPr edges have a weight of 10–18 %, their
sum equalling the requisite total.

Only one type of centered reciprocal space tetrahedral
cluster remains to be considered: the edge-centered one. We
consider the Mn10Al29 structure here. Its reciprocal space
edge centered cluster and this structure�s most intense dif-
fraction peaks are presented in Figure 28 and Table 4. As
Table 4 shows, the twenty-two strongest reflections in this
structure are first and second nearest neighbor vectors of
the edge-centered reciprocal space cluster. First and second
nearest neighbors have dhkl ranging from 2.0–2.3 and 1.2–
1.35 �, respectively.

Turning just to first nearest neighbors, for edge-centered
clusters, the only edge equivalence relations connect PG–
PG to PPr–PPr edges. PG–PG sites lie in a pentagon, while
the PPr sites form a pentagonal prism. As Figure 28 illus-
trates, the two pentagons of the pentagonal prism and the
PG pentagon itself all have edges pointing in the same di-
rection as one another. All PG–PG edges are therefore
equivalent to two PPr–PPr edges.

With this understanding, we consider diffraction intensi-
ties. The central most edge in the edge-centered cluster is
CE, the CE–CE edge is therefore strongest and in Table 4 is
set at 100 % intensity. Edges involving the CE and the some-
what less central PG have intensities from 50–70 %. PPr
sites are significantly less central than PG sites and edges in-
volving a PPr site coupled to a CE or PG edges have inten-
sities range from 21–47 %. In summary, the reciprocal-space
edge-centered tetrahedral-cluster proves a powerful descrip-
tive tool for Mn10Al29 diffraction intensities.

Reciprocal-space clusters composed of projected vertex-,
edge-, polygon, and cell-centered 600-cells have a significant
advantage over the real-space cluster descriptions more tra-

Table 3. Strongest (hkl) for MnAl4.ACHTUNGTRENNUNG(h k l) dhkl [�][a] Multi-
plicity

Vertex–vertex
(k-space-coord.)

Vertex–vertex
(atom sites)

Inten-
sity[b]ACHTUNGTRENNUNG(0 0 12) 2.06[c] 2 ACHTUNGTRENNUNG(8 0 6)–(8 0 6̄) IPr–IPr 100.0ACHTUNGTRENNUNG(8 8 6)–(8 8 6̄) IPr–IPrACHTUNGTRENNUNG(0 8̄ 6)–(0 8̄ 6̄) IPr–IPrACHTUNGTRENNUNG(8 0 4) 2.04 12 ACHTUNGTRENNUNG(8 0 6̄)–(0 0 10) IL–IPr 63.5ACHTUNGTRENNUNG(8 8̄ 10)–(0 8̄ 6) OPr–IPrACHTUNGTRENNUNG(8 8 6̄)–(0 8 10) IPr–OPrACHTUNGTRENNUNG(8 8 0) 1.25[d] 6 ACHTUNGTRENNUNG(0 8 10)–(8̄ 0 10) OPr–OPr 55.6ACHTUNGTRENNUNG(8 0 16) 1.26 12 ACHTUNGTRENNUNG(0 0 10)–(8 0 6̄) IL–IPr 43.3ACHTUNGTRENNUNG(0 0 20) 1.23 2 ACHTUNGTRENNUNG(0 0 10)–(0 0 10) IL–IL 38.9ACHTUNGTRENNUNG(5 5 0) 2.00 6 ACHTUNGTRENNUNG(0 5 0)–(5̄ 0 0) ITr–ITr 37.3ACHTUNGTRENNUNG(8 0 0) 2.16 6 ACHTUNGTRENNUNG(0 0 10)–(8̄ 0 10) IL–OPr 36.1ACHTUNGTRENNUNG(0 0 10)–(8̄ 0 10) IL–OPrACHTUNGTRENNUNG(5 3 6) 2.12 24 ACHTUNGTRENNUNG(5 5̄ 0)–(0 8̄ 6) ITr-IPr 32.0ACHTUNGTRENNUNG(5 0 10) 2.01 12 ACHTUNGTRENNUNG(0 0 10)–(5̄ 0 0) IL–ITr 30.1ACHTUNGTRENNUNG(13 0 6) 1.27 12 ACHTUNGTRENNUNG(8 0 6)–(5 0 0) IPr–ITr 25.8ACHTUNGTRENNUNG(0 0 4) 6.17 2 – – 24.0ACHTUNGTRENNUNG(3 0 10) 2.27 12 ACHTUNGTRENNUNG(5̄ 0 0)- (8̄ 0 10) ITr–OPr 13.8ACHTUNGTRENNUNG(8 5 10) 1.30 24 ACHTUNGTRENNUNG(0 5 0)–(8̄ 0 10) ITr–OPr 10.9ACHTUNGTRENNUNG(5 0 9) 2.15 12 – – 8.1

[a] Table includes dhkl of up to 1.14 �, corresponding to CuKa1 2q of 858.
[b] Intensity as in Table 1is given per reflection, with neither atomic
Debye–Waller nor Lorentz-polarization factors included. [c] Inner shell
edges have dhkl ranging from 2.0 to 2.2 �. [d] Inner shell second nearest
neighbors have dhkl ranging from 1.2 to 1.3 �.

Figure 28. Three most central sites (CE, PG, and PPr) of an edge-cen-
tered-projected reciprocal-space 600-cell using Mn10Al29 reciprocal-space
axes as a coordinate basis. The strongest diffraction peaks for the
Mn10Al29 crystal correspond to first and second nearest neighbor vectors
derived from this reciprocal-space cluster, see Table 4.

Figure 27. Four most central sites (ITr, IL, IPr, and OPr) of a polygon-
centered-projected reciprocal-space 600-cell using MnAl4 reciprocal
space axes as a coordinate basis. The strongest diffraction peaks for the
MnAl4 crystal correspond to first and second nearest neighbor vectors
derived from this reciprocal-space cluster, see Table 3.
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ditionally used.[45,77–82] Real-space clusters have a fundamen-
tal ambiguity to them: they can be centered with equal val-
idity around any of a number of different real space loca-
tions.[79] For example, in cell-centered structures, in one real
space cluster description a site could be described as a cubo-
octahedron, but with another center of equally high symme-
try, this same site would be a truncated tetrahedron.

By definition, reciprocal-space clusters can only be cen-
tered around one point, the reciprocal-space origin. In de-
scribing the strongest diffraction reflections, only a single re-
ciprocal-space cluster is possible. In our real space hunt for
metal crystals with projected 600-cell pseudosymmetries, es-
pecially when we turned to large unit cell examples, the
real-space clusters could seem almost capriciously chosen.
Reciprocal-space clusters remove such uncertainty. The crys-
tals in this paper have a variety of complex real-space struc-
tures, but their reciprocal-space diffraction patterns all
belong to one of four types: they are vertex-, edge-, poly-
gon-, and cell-centered projections of the same 600-cell re-
ciprocal-space cluster.

Introduction to the Jones model : That in tetrahedral crystals
the strongest diffraction reflections are all pseudosymmetri-
cally equivalent to one another is significant to their crystal-
line stability. The connection between strong diffraction

peaks and metallic stability is probably easiest understood
within the context of the venerable Jones model of metallic
stability. This section is devoted to a brief introduction of
this model couched in the LCAO language most familiar to
the chemistry community.[28]

The Jones model is traditionally presented as a nearly-
free electron model. Kinetic energy and spherical shells of
electrons with similar kinetic energy certainly play a funda-
mental role in the theory. The Jones model speaks clearest
to Hume-Rothery phases,[24,83–87] intermetallic structures
with one to two valence electrons per atom, e�/a. The
reason why the Jones model is particularly suited for such
compounds, however, is best understood within tight-binding
electron theories such as an extended H�ckel
theory.[26–28,88, 89]

We consider here three introductory cases: a linear chain,
a square lattice, and an fcc structure.[24,27,90] Neither of the
first two cases has much to do with actual Hume-Rothery
metal structures; they are chosen instead to show us the
constructs of Jones theory. In all three cases, we choose lat-
tice constants of a and hypothetical structures composed of
a single Group 10–12 element. The linear chain will allow us
to understand how orbital mixing takes place within the
theory. The square lattice will allow us to understand that
the Jones model provides concrete lower and upper theoret-
ical bounds for the numbers of valence electrons per atom,
e�/a. The fcc structure, which is well known in Jones metal
theory, will introduce newcomers to the multi-facetted Jones
zone.

We consider first the 1D chain. As is traditional, we con-
sider first purely free electrons. For such electrons, potential
energy is zero, the total energy is solely the kinetic energy,
and, as an electron�s reciprocal space k is proportional to
the momentum, E/k2. The total energy curve therefore has
the shape of a parabola, shown in the first panel of
Figure 29.

This free electron picture is amended by the incorporation
of an actual crystal lattice, in this case a linear equally-
spaced chain of Group 10–12 atoms with a lattice constant

Figure 29. a) Linear chain free electron energy as a function of k, the
crystal momentum; b) the “folded” format where k vectors belonging to
the same linear chain irreducible representation are placed in the same
vertical column; and c) same energy bands in the presence of s and p or-
bital atoms. Band gap in c) at k =0.5 is caused by the difference in
energy between the bonding p and the antibonding s orbitals. Note these
k=0.5 orbitals both correspond to plane waves with wavelength 2a and
are the result of the k=1 Jones-mixing indicated by the red horizontal
arrow in panel a).

Table 4. Strongest (hkl) in Mn10Al29.ACHTUNGTRENNUNG(h k l) dhkl [�][a] Multi-
plicity

Vertex–vertex
(k-space-coord.)

Vertex–vertex
(atom sites)

Inten-
sity[b]ACHTUNGTRENNUNG(0 6 0) 2.07[c] 2 ACHTUNGTRENNUNG(0 3 0)–(0 3̄ 0) CE–CE 100.0ACHTUNGTRENNUNG(7 0 2) 2.01 4 ACHTUNGTRENNUNG(2 0 5)–(5̄ 0 3) PG–PG 67.8ACHTUNGTRENNUNG(5 5 3̄)–(2̄ 5 5̄) PPr–PPrACHTUNGTRENNUNG(4 0 5) 2.07 4 ACHTUNGTRENNUNG(6 0 0)–(2 0 5̄) PG–PG 57.7ACHTUNGTRENNUNG(2̄ 5 5)–(6̄ 5 0) PPr–PPrACHTUNGTRENNUNG(2 3 5) 2.06 8 ACHTUNGTRENNUNG(2 0 5)–(0 3̄ 0) PG–CE 54.8ACHTUNGTRENNUNG(5 3 3) 2.09 8 ACHTUNGTRENNUNG(0 3 0)–(5̄ 0 3̄) CE–PG 53.3ACHTUNGTRENNUNG(6 3 0) 2.12 4 ACHTUNGTRENNUNG(6 0 0)–(0 3̄ 0) PG–CE 52.1ACHTUNGTRENNUNG(0 0 10) 1.25[d] 2 ACHTUNGTRENNUNG(2 0 5)–(2 0 5̄) PG–PG 51.0ACHTUNGTRENNUNG(0 0 6) 2.09 2 ACHTUNGTRENNUNG(5̄ 0 3)–(5̄ 0 3̄) PG–PG 48.3ACHTUNGTRENNUNG(5 5 3)–(5 5 3̄) PPr–PPrACHTUNGTRENNUNG(7 0 8) 1.26 4 ACHTUNGTRENNUNG(2 0 5)–(5̄ 0 3̄) PG–PG 47.7ACHTUNGTRENNUNG(4 5 0) 2.06 4 ACHTUNGTRENNUNG(2 0 5̄)–(2̄ 5 5̄) PG–PPr 46.8ACHTUNGTRENNUNG(3 5 2) 2.09 8 ACHTUNGTRENNUNG(5 5 3̄)–(2 0 5̄) PPr–PG 41.5ACHTUNGTRENNUNG(11 0 3) 1.28 8 ACHTUNGTRENNUNG(6 0 0)–(5̄ 0 3̄) PG–PG 36.2ACHTUNGTRENNUNG(1 5 3) 2.11 8 ACHTUNGTRENNUNG(6 0 0)–(5 5̄ 3̄) PG–PPr 32.7ACHTUNGTRENNUNG(2 2 5) 2.22 2 ACHTUNGTRENNUNG(0 3̄ 0)–(2̄ 5̄ 5̄) CE–PPr 29.7ACHTUNGTRENNUNG(10 5 0) 1.27 4 ACHTUNGTRENNUNG(5 5 3̄)–(5̄ 0 3̄) PPr–PG 29.4ACHTUNGTRENNUNG(0 10 0) 1.24 2 ACHTUNGTRENNUNG(6̄ 5 0)–(6̄ 5̄ 0) PPr–PPr 29.3ACHTUNGTRENNUNG(3 5 8) 1.28 8 ACHTUNGTRENNUNG(5 5 3)–(2 0 5̄) PPr–PG 27.1ACHTUNGTRENNUNG(8 5 5) 1.28 8 ACHTUNGTRENNUNG(6 0 0)–(2̄ 5̄ 5̄) PG–PPr 25.0ACHTUNGTRENNUNG(5 2 3) 2.25 8 ACHTUNGTRENNUNG(5 5 3)–(0 3 0) PPr–CE 23.2ACHTUNGTRENNUNG(6 2 0) 2.30 4 ACHTUNGTRENNUNG(0 3̄ 0)–(6̄ 5̄ 0) CE–PPr 21.3ACHTUNGTRENNUNG(2 8 5) 1.30 8 ACHTUNGTRENNUNG(0 3 0)–(2̄ 5̄ 5̄) CE–PPr 21.1ACHTUNGTRENNUNG(6 8 0) 1.32 4 ACHTUNGTRENNUNG(0 3 0)–(6̄ 5̄ 0) CE–PPr 12.2ACHTUNGTRENNUNG(2 0 6) 2.01 8 – 10.1ACHTUNGTRENNUNG(0 2 0) 6.22 8 – 9.8

[a] Table includes dhkl of up to 1.14 �, corresponding to CuKa1 2q of 858.
[b] As in Table 1 intensity is given per reflection, with neither atomic
Debye–Waller nor Lorentz-polarization factors included. [c] Inner shell
edges have dhkl ranging from 2.0 to 2.3 �. [d] Inner shell second nearest
neighbors have dhkl ranging from 1.2 to 1.35 �.
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of a. Crystalline orbitals belonging to k values differing
from one another by whole integers can, in the presence of
a crystal, mix with one another. (We use here the standard
crystallographic nomenclature where (hkl) reflections are in
whole numbers or, as in this case we are dealing with a 1D
system reciprocal lattice, k are single whole numbers.) We
place those orbitals, which by crystalline symmetry are al-
lowed to mix with one another, vertically atop one another:
the parabola takes on the “folded” form shown in the
second panel of Figure 29.

Orbitals generally perturb most orbitals with the same ini-
tial energy. The two states at k=

1
2, being at the same initial

energy, therefore perturb each other significantly. In the
final panel of Figure 29 we show the perturbed wave func-
tions at this k value. From the perspective of eH theory, the
lower and higher energy orbitals are a bonding p state and
an antibonding s state. Preparing for real crystal structures,
the bonding p orbital will become HOMO-like and will be
filled, while the antibonding s orbital will be LUMO-like
and be unfilled. (In Group 10–12 tetrahedral structures,
there are pseudo-bandgaps rather than actual bandgaps.
Unlike what is found for the 1D chain, the language of
HOMOs and LUMOs is therefore only approximate.)

Equally important are the two orbitals viewed from the
nearly-free electron standpoint. From this perspective, we
note that both the bonding p and antibonding s states re-
semble plane waves, plane waves with exactly the same
wavelength, l=2a, see Figure. Such a wavelength corre-
sponds to k= � 1

2. Within the context of free electrons, the
bonding p and antibonding s states are linear combinations
of the complex plane waves e

2pikx
a where k= � 1

2.
Important in the Jones model are these initially free-elec-

tron plane wave orbitals which had to become mixed in
order to form the linear chain k= � 1

2 HOMO and LUMO
orbitals. In the first panel of Figure 29 we indicate which
points on the initial parabola correspond to these two plane
waves. As this Figure shows, these two states differ from
one another by k=1, represented in this Figure as an arrow.

In Jones theory, electron orbitals are perturbed free-elec-
tron orbitals. These perturbations are caused by the atoms
in the crystal lattice. The magnitude of these perturbations
is measured by the strength of individual diffraction peaks.
In the 1D chain example, we recognize that k=1 is a strong
diffraction peak. We therefore consider the bonding p state
and an antibonding s states found at k= � 1

2 to be the result
of k= 1 mixing between the e

2pi12x
a and e

2pi�1
2 x

a plane waves. In
Jones theory, the important orbital mixings are always con-
sequences of strongly diffracting reciprocal lattice vectors.

We now consider the 2D square lattice. In Figure 30 we
show the “spaghetti” diagram for the two lowest energy or-
bitals from G, (hk)= (0 0); to X, (hk)= (1

2 0); and finally M,
(hk)= (1

2
1
2). (We follow here crystallographic convention

and do not place commas between the different vector
terms.) As this Figure shows, at X the lower and higher
energy orbitals are a very bonding p orbital and a net non-
bonding s orbital, respectively, while at M the lower and
higher energy orbitals are, respectively, a net-bonding p or-

bital and a very antibonding s orbital. All four orbitals are
plane-wave-like. At X and M, as can be seen in the figure,
their wavelengths are l= 2a and l=

p
2a, respectively.

Within the context of Jones theory, the splitting between
bonding and non-bonding states at X is due to mixing be-
tween e

2pi k
!
�x

a with k
!

= (�1
2 0) and k

!
= (1

2 0), the two states
differing from one another by k

!
= (1 0), a significant dif-

fraction peak of the structure. In Jones theory, whenever
two states are connected to one another by a strong diffrac-
tion peak, strong orbital mixing results. Thus the different
energies of the bonding and antibonding states at M are the
result of mixing between the e

2pi k
!
� x!
a for k

!
= (�1

2 �
1
2) and k

!

= (1
2

1
2) states, two states differing from one another by k

!
=

(1 1), another strong diffraction peak.

In Figure 30 we show the first Brillouin zone for the 2D
square lattice. This Brillouin zone is in the shape of a
square. (1 0), the strong diffraction peak, connects one side
of the first Brillouin zone to the opposite side. (1 0) being
strong, not only can two X states couple, any state on one
square-edge of the Brillouin zone with (hk) = (1

2 k) can
couple to another state on the opposite side of the Brillouin
zone with (hk) = (�1

2 k).
The first panel of Figure 30 shows the result of these mix-

ings. Between X and M, the points under discussion here,
there is a clear separation between lower and higher energy
states. Within the context of Jones theory, this energy sepa-
ration can be thought of as a splitting due to the intensity of
the (1 0) diffraction peak.

We now consider estimates of the most stable electron
count. We are interested here in developing bounds for the
optimal electron count. The question we pose first is how to
represent optimal electron counts on a spaghetti diagram. In
the second panel of Figure 30 we enlarge the spaghetti dia-
gram for (h k) ranging from M1 = (�1

2
1
2), to X = (1

2 0), and
finally to M2 = (1

2
1
2). As this Figure shows, the two lowest

Figure 30. a) The two lowest energy square lattice s and p bands from G,
(0 0); to X, (1

2 0); to M, (1
2

1
2). b) The energies of the two lowest bands

from M1, (1
2

�1
2); through X; to M2, (1

2
1
2). The separation between these two

bands is due to Jones mixing. Band energies prior to mixing are shown as
a dotted curve. c) The square lattice first Brillouin zone, shown as a
black square. Inscribed inside this square is a blue circle. Both the blue
circle in c) and the horizontal line in b) denote the same electron count.
Optimal electron filling based on Jones mixing is shown in red. Both
panels b) and c) indicate for this optimal electron count that, from Z1 to
Z2, a single band is filled, while nearer M1 and M2, no orbital is filled.
The black square, which is also termed the Jones zone,[24] and the blue
circle therefore provide upper and lower bounds for the optimal filling
shown in red.
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energy bands are both single-minimum curves, one cradled
inside the other. Also placed in this figure, shown as a
dotted line, is a third curve, the average of the previous two,
which can be taken as the energies of these two bands
before mixing had set in.

We focus first on this dotted line curve. The energy of this
dotted line curve, unlike the other two, refers to energies
where no Jones mixing has taken place. It describes purely
free electrons. Were we to consider the purely free electron
model and occupy all states up to the bottom-most point of
the dotted line curve (this electron occupation is represent-
ed as a blue horizontal line), we would have an electron fill-
ing which corresponds in k space to a circle just reaching
the point X.

We now turn on Jones mixing. The dotted line curve splits
into the two single minimum functions. We wish to fill as
many as possible of the lower energy function while filling
as few as possible of the higher energy function. The opti-
mal electron filling is shown as a red horizontal line, which
just touches the nadir of the higher energy curve. Were the
electron filling to be any greater in value, we would begin
filling the bottom of the upper curve, s states which are all
slightly antibonding in character. Conversely were we to
make the value any lower, we would depopulate states from
the lower energy curve, p states which are all bonding in
character.

As this Figure shows, the optimal electron count never in-
tersects the upper energy curve composed solely of anti-
bonding orbitals, and crosses the lower all-bonding curve at
points Z1 and Z2. From Z1 to X to Z2, each point in k space
has a single occupied orbital; from M1 to Z1 and M2 to Z2

there are no occupied orbital.
We now translate back these results to the Brillouin zone

diagram. After Jones mixing has set in, all k
!

at the edge of
the Brillouin zone from Z1 to X to Z2 have a single filled or-
bital. Just as in the spaghetti diagram, those points on the
zone edge closer to M1 and M2 are entirely devoid of elec-
trons. Importantly, even at X itself, the point where the
upper energy function is lowest in energy, only a single one
of the two lowest energy bands is filled. We represent this
optimal filling by the red curve in the second panel of
Figure 30. This red curve leaves the edges of the Brillouin
zone exactly at the points Z1 and Z2. As at no point in the
first Brillouin zone is any more than a single orbital filled,
no point outside the Brillouin zone is ever filled.

The optimal filling being the one presented, establishing
lower and upper bounds within the context of Jones theory
becomes straightforward. A lower bound is the area of the
largest possible circumscribed circle inside the Brillouin
zone, represented as a blue circle (this blue circle corre-
sponds to the blue horizontal line in the adjacent panel). An
upper bound is the first Brillouin zone itself. In both these
bounds just a single orbital is occupied. These areas may be
initially thought of as being in units of orbitals per k-space
unit cell. However, as we know that a reciprocal space unit
cell corresponds to a given real space unit cell, and as we

also know the number of atoms per real space unit cell, we
can convert these answers from an orbital/reciprocal space
unit cell area to an electron/atom basis. We explain the
exact procedure in the following section.

We finally, briefly, turn to the 3D fcc structure. In 2D, the
{1 0} diffraction peaks formed the edges of the first Bril-
louin zone. In the 3D fcc structure, the strong {2 0 0} and
{1 1 1} reflections form the faces of a polyhedron, termed
the Jones zone. This polyhedron is shown in Figure 31. Jones
zones prove important in the qualitative understanding of
noble metal tetrahedral structures.

Group 10–12 tetrahedral-cluster structures : The Jones
model starts with the observation that free electrons with
the same energy lie in k space on a sphere centered at the
origin and that crystal structures perturb these free electron
states. Through the intermediary of the crystal structure,
electronic states couple to one another. In the Jones model,
electronic states connected to one another by k-space vec-
tors, which are themselves strong diffraction vectors, are the
electronic states which themselves couple the most strongly.

We therefore consider a k-space polyhedron whose faces
are always connected to faces on the opposite side by strong
diffracting reciprocal lattice vectors. These k-space polyhe-
dra are termed Jones zones and represent those points in k
space whose electronic states most strongly couple with one
another. From the perspective of Jones theory, a metal
structure is most stable if its Jones zone is as similar as pos-
sible to the free electron sphere comprised of the metal�s va-
lence electrons.

Were the Jones zone and the free electron sphere to be
identical, then orbitals at the Fermi energy, which in the
free electron model are all states which lie on the surface of
the free electron sphere, would also be points on the Jones
zone and therefore would always be able to fully couple
with one another. Orbitals at the Fermi energy would there-
fore split into lower energy, possibly bonding orbitals, and
higher energy, possibly antibonding orbitals. In a metal, a
pseudogap appears in its band diagram, reminiscent of a
HOMO–LUMO gap in a molecule. Like a large HOMO–
LUMO gap, a large pseudogap stabilizes the system.[24,91,92]

The Jones model presents clear lower and upper limits for
the the number of valence electrons. The lower limit is de-

Figure 31. Face-centered-cubic Jones zone. The Jones zone is a truncated
octahedron generated by the eight {1 1 1} and six {2 0 0} reflections.
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fined by the smallest free electron sphere which just touches
a crystal structure�s Jones zone.[93] The upper limit is the
volume of the Jones zone itself expressed in units of valence
electrons per atom, e�/a.

When looking for an every day analogy of an ideal Jones
zone, an excellent object to consider is a soccer-ball-shaped
polyhedron, a polyhedron with 32 nearly equidistant faces
which looks very much like a sphere. Tetrahedral metal
structures can be viewed from this context. As we have
seen, tetrahedral cluster structures can have even more than
32 strong diffraction peaks. Some have as many as 72. And
these diffraction peaks are all pseudosymmetric with one an-
other, have roughly the same dhkl, and hence all lead to
faces on the Jones zone all roughly equidistant from the
center. A tetrahedral structure�s Jones zone, could be even
more sphere-like than a soccer ball polyhedron, and in one
or two cases, their Jones zones actually are.

Tetrahedral-cluster structures can provide ideal Jones
zone candidates. In this section we will consider this connec-
tion but only for compounds solely composed of Group 10–
12 elements (though in order to find an example of an edge-
centered tetrahedral cluster we will be forced to relax our
criteria to a compound composed of Group 10 and 13 ele-
ments).

We restrict ourselves to elements from these three col-
umns for mainly three reasons. First the Hume-Rothery
electron phases can all be built up from the elements in the
same three columns, and Hume-Rothery phases all obey
specific electron count rules.[83–85,92,94] The very first successes
for the Jones model included rationalizations of the specific
electron count rules of noble-metal Hume-Rothery phases
with the g-brass and b-manganese crystal structures.[24]

Second, no transition element with a partially filled d-band
is included, so that we can assume a priori that the d-bands
are entirely filled. And third, we include neither Groups 1
or 2 elements. Such elements are chemically so dissimilar to
Group 11 and 12 elements, that assuredly factors other than
just electron count must play a role in chemical stability.

We begin with a cubic structure, Zn11Au15Cd23 (Figure 32),
an Ih quasicrystalline approximant structure which has the
perhaps unique virtue that it is solely based on Groups 10–
12 elements, see Appendix for experimental details.

Although based on the Mackay real space cluster,[95] as
Table 5, Figures 33 and 34 show, the diffraction in this crys-
tal is well described by a reciprocal-space vertex-centered
tetrahedral cluster. In Table 5 we list the strongest reflec-
tions for Zn11Au15Cd23. The strongest diffraction peaks in
this structure correspond to the nearest neighbors of a 13-
atom reciprocal space cluster. This cluster is comprised of a
site at the origin, CC, and twelve atoms in an icosahedron,
II, centered on the origin at {5 0 3}. This cluster is shown in
the left panel of Figure 34.

Figure 32. Zn11Au15Cd23 unit cell. Elements are color-coded and a single
vertex-centered cluster is shown. Inner and outer shells are represented,
respectively, in filled-polyhedron and ball-and-stick formats. The polyhe-
dral faces are green as an Au atom lies at the cluster center.

Table 5. Strongest (hkl) for Zn11Au15Cd23.ACHTUNGTRENNUNG(h k l) dhkl [�][a] Multi-
plicity

Vertex–vertex
(k-space-coord.)

Vertex–vertex
(atom sites)

Inten-
sity[b]ACHTUNGTRENNUNG(6 0 0) 2.31 6 ACHTUNGTRENNUNG(3 5 0)–(3̄ 5 0) II–II 100.0ACHTUNGTRENNUNG(5 3 2) 2.25 24 ACHTUNGTRENNUNG(5 0 3̄)–(0 3̄ 5̄) II–II 69.0ACHTUNGTRENNUNG(5 0 3) 2.37 12 ACHTUNGTRENNUNG(5 0 3)–(0 0 0) II–CC 36.8ACHTUNGTRENNUNG(6 2 0) 2.19 12 – – 24.1ACHTUNGTRENNUNG(4 3 3) 2.37 6 – – 14.5

[a] Table includes dhkl of up to 1.81 �, corresponding to CuKa1 2q of 508.
[b] Intensity as in Table 1 is given per reflection, with neither atomic
Debye–Waller nor Lorentz-polarization factors included.

Figure 33. Diffraction pattern for a cluster-centered 3.1 nm diameter
spherical crystallite of the vertex-centered Zn11Au15Cd23 unit cell struc-
ture shown along the [3 5 0] direction. Only peaks whose peak height
are �0.27 times the most intense peaks are shown.

Figure 34. Vertex-centered reciprocal-space cluster and Jones zone for
Zn11Au15Cd23. The axes shown in the graph indicate relative directions
only of the three reciprocal cell axes. Zn11Au15Cd23 is a 1:1 quasicrystal-
line approximant. Its Jones zone differs significantly from the Jones zone
presented previously for the 1:1 quasicrystalline approximant
Zn20Al40Mg40, see footnote in text. Cluster and Jones zone are not to
scale of one another.
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The reciprocal space tetrahedral cluster provides us with
all the information required to make the Jones zone. We
need to make a polyhedron where parallel faces on opposite
sides of the polyhedron are related to one another by one of
the edges of the reciprocal space tetrahedral cluster. In the
right panel of Figure 34 we illustrate this Jones zone. The
{6 0 0} edges, which are illustrated in yellow in this figure,
generate six faces, shown in yellow in the Jones zone. Only
three of these faces can be shown in our single hemisphere
picture of the Jones zone. The other three faces are on the
exact opposite side of the three shown faces and are thus
connected to one another by vectors corresponding to the
{6 0 0} edges of the reciprocal space tetrahedral cluster.

The reciprocal lattice cluster contains 42 distinct edges
with near Ih symmetry. The corresponding Jones zone is
therefore a polyhedron of 42 facets with the same near Ih

symmetry. Its near spherical shape is self-evident and corre-
sponds to the shape of the C80 buckyball. It is even more
spherical in shape than the C60 shape, the latter shape being
the shape which corresponds to soccer balls. The 1:1 quasi-
crystalline approximant Zn11Au15Cd23 Jones zone reported
here differs significantly from the Jones zone presented pre-
viously for the 1:1 quasicrystalline approximant
Zn20Al40Mg40.

[96] The previously reported Jones zone is com-
prised of the {7 1 0}, {5 4 3}, and {5 5 0} reflections, with
respective diffraction intensities of 23.0, 26.1, and 3.0 %. In-
terestingly, the strongest intensity reflections for
Zn20Al40Mg40 are the {5 0 3}, {6 0 0}, and {5 3 2} reflec-
tions, with respective intensities of 100.0, 86.2, and 68.9 %,
the same three sets of reflections found in Zn11Au15Cd23. In
both structures the latter three reflections are the strongest,
the second strongest, and the third strongest of all diffrac-
tion peaks up to CuKa1 of 508.
Previous work has suggested
that the Jones mechanism for
MacKay-based 1:1 quasicrystal-
line approximants takes place
across {hkl} reflections where
h2+k2+l2 = 50.[96] Planes such as
{7 1 0}, {5 4 3}, and {5 5 0}
fufill this requirement. Were we
to use these planes for
Zn11Au15Cd23, we would obtain
lower and upper e�bounds of
2.54–2.70 e�/a, one whole elec-
tron/atom higher than the ex-
perimentally observed value.
As Zn20Al40Mg40, contains 40 %
of the group 2 element magne-
sium, a modified electron
counting approach beyond that
done in classic Hume-Rothery
theory might be appropriate.[97]

Of the three sets of recipro-
cal lattice vectors used in
making this Jones zone, that
which has the smallest d-spac-

ing is the {5 0 3} reflections. They therefore define the
Jones model lower bound at an electron count of 1.42 e�/a.
This lower bound is computed from the volume of the corre-
sponding free-electron sphere. The {5 0 3} peaks lead to a
sphere with a radius of p

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

52þ02þ32
p

= 1.323 ��1, where a=

13.84 �, the cell parameter. A sphere with this radius has
volume 9.700 ��3. This number must be contrasted with the
volume of a reciprocal space unit cell itself, (2p

a )3 = 9.350 �
10�2 ��3. We conclude that the {5 0 3} sphere contains
103.8 reciprocal space unit cells (103.8=9.700/9.350 � 10�2).
In the free electron model reciprocal space unit cells equal
orbitals/unit cell. The lower bound is therefore 103.8 orbitals
per unit cell.

The upper bound is the volume of the Jones cell. In this
case, the Jones cell has three face types ({5 0 3}, {6 0 0},
and {5 3 2}), planes which are at distances of 1.323, 1.362,
and 1.399 ��1 from the origin. Numerical integration results
in a volume of 11.548 ��3, equivalent to 123.5 orbitals per
unit cell (123.5=11.548/9.350 � 10�2).

As there are 146 atoms in each unit cell, and assuming
two electrons fill each orbital, we deduce that Zn11Au15Cd23

has lower and upper bounds of, respectively, 1.42 valence
electrons/atom (e�/a) (1.42= (103.8 �2)/146) and 1.69 e�/a
(1.69= (123.5 � 2)/146). These numbers are tabulated in
Table 6.

Of these two bounds, the upper bound proves more rele-
vant. Within experimental error, it is the same as the experi-
mentally determined electron count, which is calculated to
be 1.69 e�/a, (1.69= [(2 � 11)+ (1 �15)+ (2 � 23)]/ ACHTUNG-TRENNUNG(11+15+23)). In the limit of a perfectly spherical shape, or
alternatively in the presence of very strong Jones orbital
mixing, the upper bound of the Jones model becomes the

Table 6. Valence electron count for Group 10–12 tetrahedral cluster crystal structures.

Compound Vertices tetrahedral
cluster

Number
of faces

Cut-off[a] Lower bound
e�/a

Range exptl.
e�/a

Upper bound
e�/a

vertex-centered cluster
Zn11Au15Cd23 CC + II 42 0.30 1.42 1.69 1.69

edge-centered cluster
Pd3Al7 CE + PG 32 0.30 1.83 2.10 2.38
Pd3Al7

[b] CE + PG + PPr 72 0.20 1.71 2.10 2.06
polygon-centered cluster

CdCu2 ITr + IL + IPr 18 0.30 0.97 1.33 1.40
Cu3Cd10 ITr + IL + IPr 56 0.30 1.59 1.77[c] 1.85

cell-centered cluster
Cd3Cu4 IT + OT + OH 68 0.30 or

0.20
1.35 1.43 1.52

Cu5Cd8
[d] IT + OT 36 0.30 1.54 1.57–1.66 1.73

Cu5Cd8 IT + OT + OH 36 0.20 1.54 1.57–1.66 1.73
Pt5Zn21 IT + OT 36 0.30 or

0.20
1.54 1.62 1.73

Substitute a times sign for the x [a] Only {hkl} with intensities higher than stated cut-off � maximum intensity
reflection are considered in Jones calculation. If a vertex causes a single (hkl) to exceed a given cut-off all re-
flections due to the vertex type are included. [b] The Pd3Al7 single crystal refinement lists variations in thermal
parameters from B =0.02 to 1.97. The lower/upper bounds and the experimental e�/a are therefore only ap-
proximately known. [c] The Cu3Cd10 phase has variable composition. However, as there is considerable vacan-
cy disorder, we can calculate the Jones volume only where there is a solved single crystal structure. In this
solved structure there are 26.4 atoms/unit cell. [d] Cu5Cd8 is a g-brass structure. Its range of experimental elec-
tron counts resembles that of many other g-brass structures. In the case of Cu5Cd there is substitutional, but
no vacancy, disorder. Therefore the upper bound Jones estimate stays at a constant value.
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actual predicted Jones model electron count. It is plausible
that up to three significant figures in its electron count,
Zn11Au15Cd23 has reached this limit.

In Table 7 we list the strongest reflections for the cell-cen-
tered Pt5Zn21 structure. As expected, its strong diffraction
peaks can be rationalized based on a reciprocal lattice cell-
centered tetrahedral cluster with IT, OT and OH sites at, re-
spectively, {3 3 3}, {5̄ 5̄ 5̄} and {10 0 0}. As this table
shows, the most central edges, IT–IT (the {6 6 0} reflec-
tions) and IT–OT (the {8 2 2} reflections) are the most sig-
nificant of all diffraction peaks. However, the next most cen-
tral edges, those which include the OH site (the {5 5 5} and
{7 3 3} reflections), are the third and sixth strongest peaks
overall. Their intensities, on a per edge basis, are, however,
more than a factor of ten weaker than the IT–IT and IT–OT
reflections.

This table introduces us to a short-coming in the tradition-

al Jones zone model. Once included as a principal diffrac-
tion peak, the traditional Jones model does not further take
into account relative intensities. While the {5 5 5} and
{7 3 3} undoubtedly play a role in the phase stability of
Pt5Zn21, their role should be less than the role played by the
{6 6 0} and {8 2 2} reflections.

Within the confines of the traditional Jones model, we
therefore only wish to consider the effect of the most signifi-
cant peaks. Examining the structures reported in this paper,
we see that a cut-off of reflections whose intensities are at
least 30 % generally provides a clean break between inner-
most shell and more exterior edges. As Table 6 shows,
changing this cut-off from 0.30 to 0.20 does not in most
cases substantially change the Jones model estimates.

That the Jones model requires an ad hoc cut-off value
nevertheless is a potential liability to the model. Yes, the
matching of experimental electron counts to upper and
lower Jones bounds can be insensitive to the exact cut-off
used. But with any arbitrary cut-off, the possibility that
agreement between theory and experiment is being forced
rather than being naturally achieved is always an issue.

Using this cut-off value, for Pt5Zn21 we include only the
IT–IT or IT–OT reflections. These two edge types lead to
the two Jones zone face types presented in Figure 35. The il-

lustrated Jones zone is a well-known one,[24] it is that of g-
brass and consists of 36 faces with Oh symmetry.

The Jones zone approaches a spherical symmetry, though
not quite as spherical as the Zn11Au15Cd23 Jones zone. Its
volume is 360.0 orbitals per unit cell and, as there are 416
atoms in each unit cell, we deduce a Jones volume of 1.73
valence electrons/atom (e�/a) for example, 1.73= (360.0� 2)/
416. These values can be contrasted with the experimental
value of 1.62 e�/a, 1.62= [(0 � 5)+ (2 � 21)]/ ACHTUNGTRENNUNG(5+21) and a
lower bound of 1.54 e�/a, see Table 6.

The edge-centered Pd3Al7 further illustrates the impreci-
sion introduced into the Jones model by the choice of cut-
off. As Table 8 illustrates, its diffraction pattern can be inter-
preted with an edge-centered reciprocal space cluster. The
CE site is at {0 0 4}; PG at {8 3 0}, {3̄ 5 0}, and {10 0 0};

Table 7. Strongest (hkl) for Pt5Zn21.ACHTUNGTRENNUNG(h k l) dhkl [�][a] Multi-
plicity

Vertex–vertex
(k-space-coord.)

Vertex–vertex
(atom sites)

Inten-
sity[b]ACHTUNGTRENNUNG(6 6 0) 2.13 12 ACHTUNGTRENNUNG(3 3 3)–(3̄ 3̄ 3) IT–IT 100.0ACHTUNGTRENNUNG(8 2 2) 2.13 24 ACHTUNGTRENNUNG(3 3̄ 3̄)–(5̄ 5̄ 5̄) IT–OT 33.4ACHTUNGTRENNUNG(5 5 5) 2.09 8 ACHTUNGTRENNUNG(5 5 5̄)–(0 0 10) OT–OH 6.7ACHTUNGTRENNUNG(5 5̄ 5)–(0 10 0) OT–OHACHTUNGTRENNUNG(5̄ 5 5)–(10 0 0) OT-OHACHTUNGTRENNUNG(4 2 2) 3.69 24 – – 4.9ACHTUNGTRENNUNG(3 3 3) 3.48 8 – – 4.1ACHTUNGTRENNUNG(7 3 3) 2.21 24 ACHTUNGTRENNUNG(10 0 0)–(3 3̄ 3̄) IT–OH 3.6ACHTUNGTRENNUNG(5 1 1) 3.48 24 – – 3.4

[a] Table includes dhkl of up to 1.81 �, CuKa1 2q of 508. [b] Intensity as in
Table 1 is given per reflection, with neither atomic Debye–Waller nor
Lorentz-polarization factors included.

Figure 35. Cell-centered reciprocal-space cluster and Jones zone for
Pt5Zn21. Colored cluster based on sites with reflection intensities �0.30
of the most intense reflection. Reflections are color-coded. The reflec-
tions are listed in descending order of intensity and cluster cylinder radii
are proportional to intensity see Table 7. The axes shown in the graph in-
dicate relative directions only of the three reciprocal cell axes. Cluster
and Jones zone are not to scale of each other.

Table 8. Strongest (hkl) in Pd3Al7.ACHTUNGTRENNUNG(h k l) dhkl [�][a] Multi-
plicity

Vertex–vertex
(k-space-coord.)

Vertex–vertex
(atom sites)

Inten-
sity[b]ACHTUNGTRENNUNG(0 0 8) 2.07 2 ACHTUNGTRENNUNG(0 0 4)–(0 0 4̄) CE–CE 100.0ACHTUNGTRENNUNG(8 3 4) 2.06 8 ACHTUNGTRENNUNG(8 3 0)–(0 0 4̄) PG–CE 64.1ACHTUNGTRENNUNG(3 5 4) 2.04 8 ACHTUNGTRENNUNG(0 0 4)–(3̄ 5̄ 0) CE–PG 59.2ACHTUNGTRENNUNG(10 0 4) 2.04 4 ACHTUNGTRENNUNG(0 0 4)–(10 0 0) CE-PG 55.7ACHTUNGTRENNUNG(11 2 0) 2.01 4 ACHTUNGTRENNUNG(8 3̄ 0)–(3̄ 5̄ 0) PG–PG 53.3ACHTUNGTRENNUNG(3 5 7)–(8̄ 3 7) PPr–PPrACHTUNGTRENNUNG(7 5 0) 1.98 4 ACHTUNGTRENNUNG(3̄ 5 0)–(10 0 0) PG–PG 48.9ACHTUNGTRENNUNG(10 0 7)–(3 5̄ 7) PPr-PPrACHTUNGTRENNUNG(0 6 0) 2.05 2 ACHTUNGTRENNUNG(8 3 0)–(8 3̄ 0) PG–PG 49.4ACHTUNGTRENNUNG(8̄ 3 7)–(8̄ 3̄ 7) PPr–PPrACHTUNGTRENNUNG(5 2 7) 2.00 8 ACHTUNGTRENNUNG(8 3̄ 0)–(3 5̄ 7̄) PG–PPr 22.6ACHTUNGTRENNUNG(2 3 7) 2.02 8 ACHTUNGTRENNUNG(8̄ 3 7)–(10 0 0) PPr–PG 22.2ACHTUNGTRENNUNG(6 0 7) 2.02 4 ACHTUNGTRENNUNG(3 5̄ 7)–(3̄ 5̄ 0) PPr–PG 21.1ACHTUNGTRENNUNG(5 2 1) 3.63 8 – 18.3ACHTUNGTRENNUNG(3 1 4)[c] 3.51 8 – 16.6ACHTUNGTRENNUNG(3 5 3) 2.16 8 ACHTUNGTRENNUNG(3 5 7)–(0 0 4) PPr–CE 12.8ACHTUNGTRENNUNG(8 3 3) 2.19 8 ACHTUNGTRENNUNG(0 0 4̄)–(8̄ 3̄ 7̄) CE–PPr 11.5ACHTUNGTRENNUNG(10 0 3) 2.15 4 ACHTUNGTRENNUNG(10 0 7)–(0 0 4) PPr–CE 12.2

[a] Table includes dhkl of up to 1.81 �, corresponding to CuKa1 2q of 508.
[b] As in Table 1 intensity is given per reflection, with neither atomic
Debye–Waller nor Lorentz-polarization factors included. [c] Nine more
reflections with dhkl ranging from 3.1 to 3.8 have intensities between
those observed for {3 1 4} and {10 0 3}, that is, have intensities greater
or equal to the weakest inner shell reflections CE–PPr set of reflections.
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and PPr at {10 0 7}, {3 5 7}, and {8̄ 3 7}. As Table 8 shows,
edges involving solely CE and PG range in intensity from
50-100 % in intensity; edges where one of the two sites is
PPr range from 10–20 % in intensity.

Figure 36 graphically illustrates that the inner-most edges
are strongest and diffraction reflections become weaker as
their corresponding edge becomes less central. It is here
where the imprecision of the Jones model becomes appa-
rent. While CE–PPr and PG–PPr edges are at least a factor
of two weaker than the PG–PG edges, they are not so weak
that they should be entirely ignored. In Table 6, we contrast
two Jones zones. In the first, only reflections based on CE
and PG sites are included; in the second, sites involving PPr
are added to the mix. This corresponds to cut-offs of 0.30
and 0.20, respectively.

The Jones model upper bound changes from 2.38 to 2.06
e�/a. Lower bounds also change significantly from 1.83 to
1.71 e�/a. Lower and upper bounds differ from one another
by as much as 0.55 e�/a, 0.55=

2.38–1.83; this large spread can
be attributed to the less spheri-
cal nature of the Jones zone.
Given the large spread, it is not
surprising that the actual elec-
tron count is found between the
two bounds: this actual electron
count is 2.1 e�/a.

To us, the primary issue is
not whether the 0.30 or 0.20
cut-off is more accurate
(though in this paper we adopt
a cut-off of 0.30), the issue is
that a cut-off needs to be
chosen at all. All tetrahedral
edges are pseudosymmetric
with one another, if one edge
stabilizes the structure, they all

must stabilize the system. Cutting off weaker reflections due
to the all-or-nothing nature of the Jones zone results in the
loss of significant attributes of the electronic structure.

In all three cases discussed so far, there is good agreement
between the lower and upper bounds of the Jones model
and observed electron counts. This agreement suggests that
the Jones model can be used to account for phase stability
in Group 10–12 tetrahedral cluster structures in general. In
this light, compounds based on copper and cadmium prove
of genuine interest. The phase diagrams for this pair of ele-
ments is shown in Figure 37.[98] Four Cu–Cd phases are
known, in ascending concentration of cadmium they are
CdCu2, Cd3Cu4, Cu5Cd8, and Cu3Cd10.

The first and the fourth in this list of structures have poly-
gon-centered tetrahedral cluster structures. The remaining
two are cell-centered. Remarkably, for these two elements,
and, to our knowledge only for these two elements, all
known binary phases are different variants of tetrahedral
cluster crystal structures. Tables 9–11 list the principal reflec-
tions for the three structures, CdCu2, Cu5Cd8, and Cu3Cd10,
Table 2 having previously listed the principal Cd3Cu4 reflec-
tions.

CdCu2 presents us with the second main limitation inher-
ent in the Jones model. CdCu2, which crystallizes in the hex-
agonal MgZn2 structure, has diffraction spots which can be
understood in reference to a polygon-centered cluster with
ITr, IL, IPr, and OPr sites located at, respectively, {0 1 0},
{0 0 3}, {2 0 2}, and {2 �2̄ 3}. The issue here is not the cut-
off value. Reflections involving ITr, IL and IPr sites are at
least a factor of three stronger than sites involving the OPr
site. The cut-off at 0.30 is therefore clean: edges involving
ITr, IL, and IPr edges should be included while those in-
volving OPr should not. The issue lies in the dhkl.

While the edges in the reciprocal space cluster are all
pseudosymmetric with one another and before projection
were of equal length, perhaps due to the small size of the
CdCu2 structure and the concomitant rounding to whole
number diffraction lattice vectors, their final observed dhkl

Figure 36. Edge-centered reciprocal-space cluster and Jones zone for
Pd3Al7. Colored cluster based on sites with reflection intensities �0.30 of
the most intense reflection. Reflections are color-coded. The reflections
are listed in descending order of intensity and cluster cylinder radii are
proportional to intensitys, see Table 8. The axes shown in the graph indi-
cate relative directions only of the three reciprocal cell axes. Cluster and
Jones zone are not to scale of each other.

Figure 37. Cu–Cd binary phase diagram adapted from Massalski.[98] The four known stable Cu–Cd phases are
color-coded, ox-blood CdCu2; carnelian: Cd3Cu4; Spanish yellow: Cu5Cd8; and fluorescent chartreuse: Cu3Cd10.
See Figure 42.
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vary from 2.00 to 2.48 �. As Table 9 and Figure 38 show, al-
though there are five intense reflections ({1 1 2}, {1 1 0},
{0 0 4}, {1 0 3}, and {2 0 1} corresponding to ITr–IPr, ITr–

ITr, IPr–IPr, ITr–IL, and IL–IPr), respectively; only two of
these five reflections have a large enough dhkl to actually
form faces in the Jones zone. The Jones zone does not incor-
porate the effect of three of the five principal reflections re-
sponsible for the CdCu2 phase stability. Nonetheless, as
Table 6 shows, the actual CdCu2 electron count lies comfort-
ably between the lower and upper Jones zone bounds.

The next two phases in the Cu–Cd phase diagram are
both based on cell-centered clusters. Cu5Cd8 is a g-brass
structure and our previous discussions on this structure and
on the Pt5Zn21 g-brass superstructure examine almost all the
relevant issues. Its principal diffraction peaks, reciprocal lat-
tice cluster, and Jones zone are shown in Table 10 and
Figure 39.

Table 11. Strongest (hkl) for Cd3Cu10.

(h k l) dhkl [�][a] Multi-
plicity

Vertex–vertex
(k-space-coord.)

Vertex–vertex
(atom sites)

Inten-
sity[b]

(0 0 4) 2.19 2 (3 0 2)–(3 0 2̄) IPr–IPr 100.0
(3̄ 3 2)–(3̄ 3 2̄) IPr–IPr
(0 3̄ 2)–(0 3̄ 2̄) IPr–IPr

(3 0 1) 2.26 12 (3 0 2)–(0 0 3̄) IL–IPr 52.1
(3 3̄ 3)–(0 3̄ 2) OPr–IPr
(0 3 3)–(3̄ 3 2) OPr–IPr

(2 1 2) 2.27 24 (2 2̄ 0)–(0 3̄ 2̄) ITr–IPr 50.4
(2 0 3) 2.24 12 (0 0 3)–(2̄ 0 0) IL–ITr 36.8
(2 2 0) 2.03 6 (0 2 0)–(2̄ 0 0) ITr–ITr 36.1
(3 0 0) 2.34 6 (0 0 3)–(3̄ 0 3) IL–OPr 22.1

(0 0 3̄)–(3̄ 0 3̄) IL–OPr
(1 0 3) 2.69 12 (2̄ 0 0)–(3̄ 0 3̄) ITr–OPr 20.6
(2 1 0) 2.66 12 – – 16.3
(2 0 2) 2.74 12 – – 16.2

[a] Table includes dhkl of up to 1.81 �, corresponding to CuKa1 2q of 508.
[b] Intensity as in Table 1is given per reflection, with neither atomic
Debye–Waller nor Lorentz-polarization factors included.

Figure 38. Polygon-centered reciprocal-space cluster and Jones zone for
CdCu2. Colored cluster based on sites with reflection intensities �0.30 of
the most intense reflection. Only two of the five reflections which meet
this criterion have large enough dhkl values to actually appear in the
Jones zone. These two reflections are color-coded. The reflections are
listed in descending order of intensity. Cluster cylinder radii are propor-
tional to intensity. Reflections are color-coded, see Table 9. The axes
shown in the graph indicate relative directions only of the three recipro-
cal cell axes. Cluster and Jones zone are not to scale of each other. The
pictured Jones zone is the same shape as that reported for AgZn else-
where.[25]

Figure 39. Cell-centered reciprocal-space cluster and Jones zone for
Cu5Cd8. Cluster based on sites with reflection intensities �0.30 of the
most intense reflection, see Figure 35 for a similar figure. The reflections
are listed in descending order of intensity and cluster cylinder radii are
proportional to intensity, see Table 10. The axes shown in the graph indi-
cate relative directions only of the three reciprocal cell axes. Cluster and
Jones zone are not to scale of each other.

Table 10. Strongest (hkl) for Cu5Cd8.ACHTUNGTRENNUNG(h k l) dhkl

[�][a]
Multi-
plicity

Vertex–vertex
(k-space-
coord.)

Vertex–vertex (atom
sites)

Inten-
sity[b]ACHTUNGTRENNUNG(3 3 0) 2.26 12 (3

2
3
2

3
2)–(

�3
2

�3
2

3
2) IT–IT 100.0

(4 1 1) 2.26 24 (3
2

�3
2

�3
2)–(

�5
2

�5
2

�5
2) IT–OT 65.0

(3 3 2) 2.04 8 (5
2

5
2

�5
2)–(0 0 5̄) OT–OH 22.8

(5
2

�5
2

5
2)–(0 5̄ 0) OT–OH

(
�5
2

5
2

5
2)–(5̄ 0 0) OT–OH

(4 2 2) 1.96 24 (5 0 0)–(3
2

�3
2

�3
2) IT–OH 17.1

(1 1 0) 6.78 24 – – 16.1
(5 1 0) 3.48 24 – – 12.5

[a] Table includes dhkl of up to 1.81 �, CuKa1 of 508. [b] Intensity as in
Table 1 is given per reflection, with neither atomic Debye-Waller nor
Lorentz-polarization factors included.

Table 9. Strongest (hkl) for CdCu2.ACHTUNGTRENNUNG(h k l) dhkl [�][a] Multi-
plicity

Vertex–vertex
(k-space-coord.)

Vertex–vertex
(atom sites)

Inten-
sity[b]ACHTUNGTRENNUNG(1 1 2) 2.11 12 ACHTUNGTRENNUNG(1 1̄ 0)–(0 2̄ 2̄) ITr–IPr 100.0ACHTUNGTRENNUNG(2 0 2)–(1̄1 0) IPr–ITrACHTUNGTRENNUNG(1 1 0) 2.48 6 ACHTUNGTRENNUNG(0 1 0)–(1̄ 0 0) ITr–ITr 77.2ACHTUNGTRENNUNG(0 0 4) 2.00 2 ACHTUNGTRENNUNG(2 0 2)–(2 0 2̄) IPr–IPr 75.8ACHTUNGTRENNUNG(0 2̄ 2)–(0 2̄ 2̄) IPr–IPrACHTUNGTRENNUNG(2̄ 2 2)–(2̄ 2 2̄) IPr–IPrACHTUNGTRENNUNG(1 0 3) 2.26 12 ACHTUNGTRENNUNG(0 0 3)–(1̄ 0 0) IL–ITr 75.2ACHTUNGTRENNUNG(1̄ 0 0)–(2̄ 0 3̄) ITr–OPrACHTUNGTRENNUNG(2 0 1) 2.07 12 ACHTUNGTRENNUNG(2 0 2)–(0 0 3̄) IPr–IL 71.3ACHTUNGTRENNUNG(2 0 0) 2.15 6 ACHTUNGTRENNUNG(0 0 3)–(2̄ 0 3) IL–OPr 25.7ACHTUNGTRENNUNG(0 0 3̄)–(2̄ 0 3̄) IL–OPrACHTUNGTRENNUNG(2 0 2) 1.89 12 – – 7.7ACHTUNGTRENNUNG(1 0 2) 2.93 12 – – 4.0

[a] Table includes dhkl of up to 1.81 �, corresponding to CuKa1 2q of 508.
[b] Intensity as in Table 1is given per reflection, with neither atomic
Debye-Waller nor Lorentz-polarization factors included.

www.chemeurj.org � 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Chem. Eur. J. 0000, 00, 0 – 0

�� These are not the final page numbers!
&22&

S. Lee et al.

www.chemeurj.org


One important distinction between Cu5Cd8 and Pt5Zn21, is
that, due to rounding, both the IT–OH and OT–OH reflec-
tions have significantly shorter dhkl than the IT–IT and IT–
OT peaks. It therefore proves irrelevant to the Jones zone,
whether edges involving OH sites are included. A change in
cut-off from 0.30 to 0.20 does lead to inclusion of edges in-
volving OH sites, but no change in either Jones lower or
upper bounds ensues from this change.

The Cd3Cu4 structure presents us with one last issue in
our Jones model treatment. This structure, being comprised
of cell-centered tetrahedral clusters, has as principal edges
in descending order of importance IT–IT, IT–OT, and IT–
OH and OT–OH, these last two reflections being roughly
equal in importance (see Table 2). The issue is whether in
evaluating the importance of a given Jones face intensities
on a per reflection or a per edge basis should be considered.
If a reflection has a strong intensity, then in the Jones model
this should result in a strong mixing of states. From the per-
spective of the Jones model, it does not matter if a multi-
tude of equivalent edges are responsible for the reflection
intensity.

We therefore assume that in the choosing of Jones zone
cut-off values, intensity on a per reflection basis should be
used. For Cd3Cu4, the OT–OH reflection is only slightly
weaker than the IT–IT and IT–OT reflections. With this un-
derstanding, edges involving the OH site are well above the
0.30 threshold and certainly require inclusion. In Figure 40,
we therefore construct our Jones zone using all edges in-
volving IT, OT, and OH sites. The inclusion of the OH sites
leads to four rather than two faces in the Jones zone. The
zone is reasonably spherical. Lower and upper bounds are
1.35 and 1.52 e�/a compared to an experimental value of
1.43 e�/a.

The final Cu–Cd phase is Cu3Cd10, a polygon-centered
cluster structure. In this structure ITr, IL, IPr, and OPr sites
are located at, respectively, {0 2 0}, {0 0 3}, {3 0 2}, and
{3 3̄ 3}. Its diffraction data are shown in Table 11. As this
table shows, reflections based solely on ITr, IL, and IPr
edges are two to four times stronger than those involving
OPr sites. Using a cut-off of 0.30, only the former edges are

included. The reciprocal space cluster and Jones zone are il-
lustrated in Figure 41. The Jones zone is somewhat spherical
with lower and upper bounds of 1.59 and 1.83 e�/a, values
which comfortably straddle the experimental electron count
of 1.77 e�/a.

In all seven cases considered in this section, see Table 6,
the Jones zone model provides reasonable lower and upper
bounds for phase stability, this despite the inherent liabilities
of the method. We leave this section with a graphical repre-
sentation of the overall Jones model. In Figure 42 we illus-

trate the Jones zones for all four known Cu–Cd phases,
using in all four of the zones identical e�/a scales. Their Cd
content ranges from 33–77 %. In going from the most Cd-
poor to the most Cd-rich phase, that is, in progressing from
CdCu2, to Cd3Cu4, to Cu5Cd8, and finally to Cu3Cd10, their
experimental e�/a progress from 1.33 to 1.43 to 1.62 to 1.77,
just as their Jones zone volumes travel from 1.40, to 1.52, to
1.73, and finally to 1.85 e�/a.

Each Jones zone volume is only slightly bigger than the
next volume, but the four volumes track the actual number

Figure 40. Cell-centered reciprocal-space cluster and Jones zone for
Cd3Cu4. Colored cluster based on sites with reflection intensities �0.30
of the most intense reflection. Reflections are color-coded. The reflec-
tions are listed in descending order of intensity and cluster cylinder radii
are proportional to intensity, see Table 2. The axes shown in the graph in-
dicate relative directions only of the three reciprocal cell axes. Cluster
and Jones zone are not to scale of each other.

Figure 41. Polygon-centered reciprocal-space cluster and Jones zone for
Cu3Cd10. Colored cluster based on sites with reflection intensities �0.30
of the most intense reflection. Reflections are color-coded. The reflec-
tions are listed in descending order of intensity and cluster cylinder radii
are proportional to intensity, see Table 11. The axes shown in the graph
indicate relative directions only of the three reciprocal cell axes. Cluster
and Jones zone are not to scale of each other.

Figure 42. The Jones zones of the four binary Cu–Cd phases in order of
ascending cadmiun content. Phases are color-coded in the color version
of figure. Ox blood: CdCu2; carnelian: Cd3Cu4; Spanish yellow: Cu5Cd8;
and fluorescent chartreuse: Cu3Cd10. Single Jones zones are plotted at
the same e�/a scale. Neighboring Jones zones show the more cadmium-
rich Jones zone enveloping the less cadmium-rich phase.

Chem. Eur. J. 2013, 00, 0 – 0 � 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim www.chemeurj.org

These are not the final page numbers! ��
&23&

FULL PAPERDiffraction Symmetry in Tetrahedral Packing

www.chemeurj.org


of valence electrons in these structures. In Figure 42 we di-
rectly compare each Jones zone with the preceding zone,
following the progression of the phases. Each zone partially
swallows up the preceding zone. As the cadmium content in-
creases, so does the number of valence electrons. Within the
constraints of possible crystal structures, Jones zones reca-
pitulate free electron spheres.

Symmetry and electrons : This paper is long. The basic story
it tells has been told before. Electronic states mix and stabi-
lize the structure. Symmetry organizes the way this mixing
occurs. The twist here is that the symmetry comes from two
different sources. On the one hand there is the crystal, on
the other hand there are the electrons. The crystal symmetry
is described by a space group; the electron symmetry, at
first, is that of a free electron sphere. We can couch both
symmetries in terms of reciprocal space. Orbital mixing
proves best when the crystal symmetry, best thought of in
terms of the Jones zone, mimics the second.

The crux of the paper is that were it possible for the crys-
tal to go beyond the most symmetrical 3D point groups, Oh

and Ih, and thus have even greater numbers of faces in their
Jones zone, it would be possible to have even more mixing
on the Fermi surface free electron sphere. Amazingly, crys-
tals find a way to do so. They cannot find more 3D symme-
tries; there are none: they find 3D pseudosymmetries in-
stead. Knowing best the language of perfect symmetry, we
invoke a 4D Platonic solid to describe them.

Tetrahedrally packed quasicrystalline approximants and
Frank–Kasper phases crystals whose highest symmetry sites
are Td, Th, D3h„ or C2v, adopt a collection of true and pseu-
dosymmetry axes which are all projections of objects with
the same 4D point-group. And this point group organizes
the faces of their nearly sphere-like Jones polyhedra into
pseudosymmetrically equivalent faces. Mixing, pseudogaps,
and stability ensue. It�s a bit of a mouthful, but it is just sym-
metry controlling the fate of electronic states and electronic
states controlling the stability of molecules.

Mysterious metals : Hydrogen and oxygen form H2O; the
stoichiometry and the number of bonds correspond to the
hydrogen and oxygen valencies. Metals do not work the
same way. Their stoichiometry, the number of their bonds,
and their atomic valencies seem to cascade to more and
more complex formulations. It seems hopeless to explain in
any language as straightforward as that used for hydrogen
and oxygen, why copper and cadmium make four com-
pounds with the stoichiometries CdCu2, Cd3Cu4, Cu5Cd8,
and Cu3Cd10, let alone their forbidding crystal structures
with 12, 1124, 52 and 28 atomic sites per unit cell.

The Hume-Rothery rules and the Jones model tell us a lot
about the factors controlling their stability. For example, for
the g-brass structure, Cu5Cd8, the Hume-Rothery rules tell
us that it should be found at 21/13 e�/a, which it does, and
Jones theory tells us that this electron count is controlled by
the {3 3 0} and {4 1 1} and other reflections, a result con-
firmed by pseudo-gap measurements,[92,99–101] high quality

band structures,[87, 102–105] and even H�ckel and extended
H�ckel theory.[28,94,105] These models certainly tell us a lot
about why g-brass exists. But even with these results, can we
see the g-brass structure as something simple, in the same
way that we can think of the structure of one water mole-
cule as simple?

We can’t. But perhaps there is a hint that some day we
will. All diffraction patterns of all crystals discussed in this
paper are all projections of the same 4D Platonic solid. This
4D solid, like all 3D Platonic solids, is in some sense simple.
Our Platonic view though is in reciprocal space, not real
space. Today, to project the real space structure of g-brass
from an object with just a few sites in its asymmetric unit,
we need to project from the 6D D6 or 8D E8 Bravais lattices.
(Of these two, the 8D Bravais lattice can capture the full
600-cell point group symmetry while the D6 can not; the
point group of D6 being 6!� 25 element, it cannot be a super-
group of the 600-cell point group, H4, with 5!2 group ele-
ments.[106]) Perhaps real space geometrical constructions
remain to be found, simpler than the known 6D or 8D Brav-
ais projections, whose higher dimensional geometry is solely
based on 4D Platonic solids, or their point groups. If so,
they would bring us one step closer to thinking of this one
class of metal structures as simple and transparent.

Appendices

Synthesis and characterization of Zn11Au15Cd23 : Samples of Au32Cd47Zn21

were prepared by mixing a one gram sample of Au (shaved metal), Cd
(powder), and Zn ACHTUNGTRENNUNG(powder) with nominal 99.9 % metal purity and sealing
the mixture in an evacuated silica tube. The mixture was heated from
room temperature to 650 8C over 5 h, held at that temperature for anoth-
er 5 h, and then cooled to 250 8C gradually over a two-week period, after
which the furnace was turned off. Microprobe measurements of crystals
extracted from the bulk sample yielded a composition of
Zn11.0(1)Au15.0(1)Cd23.2(1).

A crystal was then selected for single crystal refinement. Initial refine-
ment with 100 % occupation of all sites led to a crystal similar to the one
reported, but where the Cd4 site had a thermal factor substantially larger
than that of the other sites. We therefore allowed mixed occupation of
this site permitting Au, Cd, and Zn to occupy this position, now renamed
site M4, while constraining that overall site M4 remained fully occupied.
With the inclusion of only these two new parameters wR2 for all reflec-
tions lowered from 12.80 to 12.24 %, a statistically significant decrease.
The final refined crystal stoichiometry (see Table 12) was
Zn11.0Au15.0Cd23.0, in good agreement with the microprobe measurements,
see above.

The refinement procedure used to obtain the M4 site occupancies was as
follows: beginning with the M4 site fully occupied by Cd, two new pa-
rameters were introduced allowing for Au and Zn occupation at this site,
but where the sum of occupation was set at full occupancy. Initially M4
thermal parameters were kept at the isotropic and fixed values of the
original Cd4 refinement (Tables 13 and 14). A large damping factor was
initially included in the refinement but this damping factor was slowly
withdrawn. After the site occupation had reached a stable value, site oc-
cupancies were fixed and M4 thermal parameters were released.

These values could be compared with values derived from the microp-
robe analysis. Microprobe analyses for the crystal as a whole gave
Zn11.0(1)Au15.0(1)Cd23.2(1). If we assume that all metal sites are fully occupied
and that only the M4 site has mixed metal occupation, these microprobe
results lead to M4 Au/Cd/Zn occupation values of 0.27–0.29/0.37–0.39/
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0.35–0.38. These values are sufficiently similar to the values obtained in-
dependently by refinement (values of 0.27/0.37/0.36) that no further occu-
pation refinement was sought.

600-Cell to 3D cluster projections : The 4D to 3D projection matrices
used to generate the vertex-, edge-, polygon-, and cell- centered clusters
are given in the Supporting Information. The 600-cell 3D projections,
which are the result of these projection matrices, are illustrated in
Figure 43. As discussed in the text, only the hemisphere of the 600-cell
closest to the chosen center of the projection is kept, a procedure analo-
gous to that typically used in orthographic projections of the Earth
where only a single hemisphere centered around either the North or
South Pole is shown. In our 4D to 3D 600-cell projections, the roles of
the North and South Poles have been taken up by the four 600-cell high
symmetry positions: the vertex-, the edge-, polygon-, and cell-centers.

A second further constraint is required for metal crystals. Tetrahedra
which are almost perfectly regular near the orthographic projection
center become entirely flat at the projection equator. Such flattened tet-

rahedra are implausible as actual metal crystal building blocks. In
Figure 43, we have therefore removed all projected vertices which lie at
the projection equator itself. In the case of the edge- and polygon-cen-
tered projection, vertices, whose projected radius are only 0.9 and 1.3 %,
respectively, less than the equatorial radius, have been eliminated as well.

The full hemispheric orthographic projections are shown to the right of
Figure 43, while hemispheric orthographic projection with equatorial

Table 13. Atomic coordinates (� 104) and equivalent isotropic displace-
ment parameters (�2 � 103) for Zn11Au15Cd23.

Site Occ. x y z Ueq
[a]

Au1 0
0

0 18(1)

Au2 3306(1)
0

2096(1) 9(1)

Au3 5000
0

3290(1) 8(1)

M4[b] 0.27/0.37/0.36 1740(1)
0

1027(1) 29(1)

Cd7 5000 �1178(1) 5000 9(1)
Cd8 3031(1)

1815(1)
1134(1) 12(1)

Zn9 3331(1)
0

4035(1) 9(1)

[a] Ueq is defined as one third of the trace of the orthogonalized Uij

tensor. [b] The occupation shown for site M4 is the fraction Au/Cd/Zn.
Refining the M4 site as a mixture (shown here) rather than pure Cd
lowers the R1 value from 3.71 to 3.53 % (for I>2s(I)).

Table 14. Anisotropic displacement parameters (�2 � 103) for
Zn11Au15Cd23. The anisotropic displacement factor exponent takes the
form: �2p2[h2a*2U11 + … + 2hka*b*U12].

Site U11 U22 U33 U23 U13 U12

Au1 18(1) 18(1) 18(1) 0 0 0
Au2 9(1) 9(1) 8(1) 0 1(1) 0
Au3 7(1) 12(1) 6(1) 0 0 0
M4 20(1) 29(1) 38(1) 0 �19(1) 0
Cd7 8(1) 11(1) 9(1) 0 0 0
Cd8 14(1) 10(1) 12(1) 2(1) 0(1) 2(1)
Zn9 7(1) 11(1) 8(1) 0 2(1) 0

Figure 43. Orthographic hemispheric a), b) vertex-, c), d) edge-, e), f) pol-
ygon-, and g), h) cell-centered 3D projections of the 4D 600-cell. Follow-
ing standard cartographic projections, only the hemisphere closest to the
projection center is kept. The left column shows the orthographic projec-
tions discussed in the paper text while the right column gives these same
projections with the unphysical equatorial and near-equatorial sites in-
cluded as well.

Table 12. Crystallographic information and R values for Zn11Au15Cd23.

Empirical formula Zn11.0Au15.0Cd23.0

formula weight 12 958.50
T 293(2) K
l 0.71073 �
crystal system cubic
space group Im3̄
unit cell dimensions a =13.8432(19) �
V 2652.8(6) �3

Z 3.2244
1calcd 8.111 Mg m�3

m 57.845 mm�1

F(000) 5414
2q range for data collection 2.94 to 37.568
index ranges �23 � h � 12

�5 � k � 23
�21 � l � 10

reflections collected 5781
independent reflections 1282 [Rint =0.0761]
completeness 99.6 %
absorption correction semi-empirical from equivalents
refinement method full-matrix least-squares on F 2

data/restraints/parameters 1282/0/38
goodness-of-fit on F2 0.775
final R indices [I>2s(I)] R1 =0.0353, wR2 =0.1048
R indices (all data) R1 =0.0533, wR2 =0.1224
largest diff. peak and hole 2.950 and �4.013 e ��3
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sites removed are given on the left. The number of vertices removed are
30, 22, 14, and 12 for the vertex-, edge-, polygon-, and cell-centered pro-
jections, respectively. These latter projections correspond to the projec-
tions used in the main body of this paper.
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Intermetallic Phases

S. Lee,* R. Henderson, C. Kaminsky,
Z. Nelson, J. Nguyen, N. F. Settje,
J. T. Schmidt, J. Feng . . . . . . . . &&&&—&&&&

Pseudo-Fivefold Diffraction Symme-
tries in Tetrahedral Packing

Hidden symmetries : Metal crystal
structures such as Cd3Cu4 (see figure)
with its 1124 atom unit cell continue to
intrigue. Why do such simple stoichio-
metries form such complex forms?
Fivefold pseudosymmetries prove to
be a unifying theme. In newly pre-
pared Zn11Au15Cd23, the pseudosymme-
tries lead to an electron count which,
to three significant figures, accords
with experiment.
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