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We study the possibility of realizing robust helical surface states in Z2 ¼ 0 systems. We find that the
combination of anisotropy and finite-size confinement leads to the emergence of robust helical edge states
in both two-dimensional and three-dimensional Z2 ¼ 0 systems. By investigating an anisotropic Bernevig-
Hughes-Zhang model in a finite sample, we demonstrate that the transport manifestation of the surface
states is robust against nonmagnetic disorder, resembling that of a Z2 ¼ 1 phase. Notably, the effective
energy gap of the robust helical states can be efficiently engineered, allowing for potential applications
as valley filters and valley valves. The realization of emerging robust helical surface states in realistic
materials is also discussed.
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Introduction.—Two-dimensional (2D) quantum spin
Hall effect (QSHE) and three-dimensional (3D) strong
topological insulators (STIs), characterized by the time-
reversal (TR) invariant Z2 ¼ 1, have generated extensive
interest in recent years [1,2]. The hallmark of these novel
phases is the existence of odd pairs of helical edge (2D) or
surface (3D) states that are robust against TR-conserving
perturbations. In 2D, the robust helical edge states give rise
to quantized local and nonlocal conductance [3–5] and spin
polarized edge current [6]. In 3D, the robust helical surface
states with spin-momentum locked gapless dispersion [7,8]
lead to half-integer quantum Hall effect [9], weak anti-
localization [10], absence of backscattering [11], etc. [1].
These exotic properties make their host systems ideal
platforms for testing fundamental physical paradigms
and achieving promising application in low-power dissi-
pation information processing.
However, the requirement of Z2 ¼ 1 for the existence of

robust helical surface or edge states is rather stringent.
Indeed, the QSHE is only experimentally confirmed in
HgTe=CdTe and InAs=GaSb quantum wells [3,5]. The
scarcity of host systems represents a materials challenge,
hindering the study and development of devices based
on robust helical edge states. In 3D systems, one may note
other classes of TIs that harbor multiple Dirac surface states:
Z2 ¼ 0 weak topological insulators (WTIs) [12–16] and
topological crystalline insulators [17–22]. More recently, a
WTI material Bi14 Rh3I 9 was successfully fabricated in exp-
eriment, which generated intense attention [23]. It becomes
highly desirable to be able to engineer these materials with
multiple Dirac states into structures with robust topological
transport.
In this Letter, we show the emergence of robust helical

edge (surface) states in both 2D and 3D Z2 ¼ 0 systems,
arising from anisotropic confinement in a finite-size sample.

On the basis of transport simulations of an anisotropic
Bernevig-Hughes-Zhang (BHZ) model, we demonstrate
quantized conductance of helical edge states under strong
nonmagnetic disorders. The robustness of helical surface
states due to anisotropic confinement is generalizable to
3DWTIs. Moreover, the proposed Z2 ¼ 0 systems possess
additional exotic properties not present in Z2 ¼ 1 TIs.
In particular, by controlling the sample size and strain-
engineered anisotropy, this mechanism allows for efficient
tuning of the effective energy gap and the fabrication of
valley filter and valley valvewithout breakingTR symmetry.
Finally, two realistic material systems that host emerging
robust helical surface states are proposed.
2D model.—We consider an anisotropic BHZ model

in a square lattice [24,25]. The four-band tight-binding
Hamiltonian in the momentum representation reads

Hð~kÞ ¼
 
hð~kÞ 0

0 h�ð−~kÞ

!
;

hð~kÞ ¼ τzðm −mx −my þmx cos kx þmy cos kyÞ
þ τxυx sin kx þ τyυy sin ky; (1)

where hð~kÞ and its time reversal h�ð−~kÞ are, respectively,
decoupled Hamiltonians for the two spins. The Pauli
matrices ~τ address the orbital space. This model involves
five parameters. Specifically, m determines the band gap,
vx;y reflects the Fermi velocity, and mx;y represent the
hopping amplitudes between nearest-neighbor sites along
the x, y directions, respectively. The gap parameter m
is a key variable in subsequent simulations. We adopt the
following values for the other parameters unless otherwise
specified: mx ¼ 0.8, my ¼ 1.2, υx ¼ υy ¼ 3.0.
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We first examine the topological properties of bulk
phase described by this model by calculating the Z2

invariant [12]. A Z2 ¼ 1 QSHE is obtained when m ∈
ð0; 2mxÞ∪ð2my; 2mx þ 2myÞ [24,25]. In contrast, Z2 ¼ 0
when m ∈ ð−∞; 0Þ∪ð2mx þ 2my;∞Þ or m ∈ ð2mx; 2myÞ.
However, the two regions with Z2 ¼ 0 are distinct from
each other. When m ∈ ð−∞; 0Þ∪ð2mx þ 2my;∞Þ, all
bands are normal bands as ordinary insulator, whereas the
region m ∈ ð2mx; 2myÞ is nontrivial in the case of aniso-
tropic mx ≠ my. It contains two inverted bands around
kx ¼ 0 and π (see the Supplemental Material for details
[26–29]). The inverted bands guarantee the existence of
helical edge modes, whose amplitude decays from y boun-
dary to the bulk exponentially with a decay length
ξ ∼ 2υy=Δb. Here, Δb denotes the inverted bulk gap [30].
When m ∈ ð2mx; 2myÞ, the two inverted gaps (Δb

0 ¼ 4my−
2m at kx ¼ 0,Δb

π ¼ 2m − 4mx at kx ¼ π) result in two pairs
of helical edge modes labeled by 0 and π, respectively.
Narrow width or thickness of a Z2 ¼ 1 TI is often viewed

to impose adverse effects on the transport of helical surface
states. In a 2D system, the edge channels on the two sides of
a narrow sample becomes hybridized, leading to undesir-
able backscattering between edge states by weak disorder
[30]. In a 3D system, the high-quality samples are always
grown via layer-by-layer MBE techniques. It was indeed
observed in ultrathin films that the finite size effect leads
to a hybridization gap, destroying the robustness of the
helical surface state and drastically diminishing the surface
conductivity [31].
Key to our proposal is the observation that in a finite

sample, these two helical edge states behave differently for
various m values [see Figs. 1(a) and 1(b)]. Intriguingly,
when m approaches the critical value corresponding to the
topological phase transition (i.e., m ¼ 1.64), the bulk gap
at π approaches zero, Δb

π → 0, while Δb
0 remains finite.

Consequently, the decay length ξπ of π helical edge channels
is exponentially long, whereas ξ0 of 0 helical edge channels
can, in principle, be much smaller than the sample width.
The strong hybridization of π helical edge states annihilates
the corresponding edge channels, whereas the small ξ0

value guarantees the survival of 0 helical edge channels.
Therefore, from a transport point of view as shown in
Fig. 1(b), the conducting edge channels are similar to those
in Fig. 1(c), although their Z2 invariants defined for the
bulk systems are different. Besides, there are two pairs
of conducting channels in Fig. 1(a), despite the fact that
Z2 ¼ 0. The similarity between conducting edge channels
between the Z2 ¼ 0 system [Fig. 1(b)] and the Z2 ¼ 1
system [Fig. 1(c)] leads naturally to the speculation that
the emergent kx ¼ 0 helical edge states are as robust as the
edge states in a Z2 ¼ 1 system.
In order to quantitatively assess the robustness of those

emerging Z2 ¼ 0 helical edge states, we inspect a two-
terminal device and a π-bar device [see Figs. 2(a) and 2(e)]
and study their transport properties in the presence of TR-
conserving disorder using the Landauer-Büttiker formula
[32–34]. The longitudinal terminals are perfect leads with
the same parameters as the central region, and the trans-
verse terminals are metallic leads. The disorder is modeled
by the Anderson-type random on-site potential uniformly
distributed in the range ½−W=2;W=2�. As in the exper-
imental setup [3,5], the two-terminal conductance G12;12
and nonlocal conductance G14;23 values of these two
devices are systematically assayed in our simulations.
In Figs. 2(b)–2(d), the two-terminal conductance G12;12

and the corresponding fluctuation versus Fermi energy ϵF
under various m are plotted. The case of emergent helical
states with m ¼ 1.64 is shown in Fig. 2(c). The conduct-
ance G12;12 shows two quantized plateaus 4e2=h and 2e2=h
in the clean limit. In the presence of strong disorder, the
4e2=h conductance decreases rapidly while the 2e2=h
plateau remains unchanged with vanishing fluctuation.
Therefore, the two-terminal transport properties of emer-
gent helical edge states in the Z2 ¼ 0 case behave exactly
like a Z2 ¼ 1 QSHE, as shown in Figs. 2(c) and 2(d). The
conductance is completely different from the Z2 ¼ 0, Δb

0 ¼
Δb

π case, where only the G12;12 ¼ 4e2=h plateau is present
in the clean limit, which is found to be fragile against
disorder [see Fig. 2(b)]. This is because the carriers can
scatter between the counterpropagating 0 and π channels in
this case [see Fig. 1(a)]. In contrast, due to the vanishing of
π helical edge states under finite size confinement, the
emergent helical states described above are not susceptible
to these scattering channels.
The two-terminal measurements can also be corrobo-

rated by π-bar measurements [see Figs. 2(f)–2(h)]. For the
case with emergent helical edge states, G14;23 shows well
quantized plateaus at 4e2=h, irrespective of leads detail and
strong disorder strength [see Fig. 2(g)]. The two-terminal
perfect 2e2=h plateau and π-bar perfect 4e2=h conductance
plateaus should plausibly lead to a transport definition of
robust helical edge states in these Z2 ¼ 0 systems. In a
Z2 ¼ 1 topological insulator, the robustness of the edge
conduction is derived from its intrinsic topological char-
acter. The robust helical edge states in our Z2 ¼ 0 model,

FIG. 1 (color online). [(a)– (c)] Schematic plots of helical edge
modes in the anisotropic BHZ stripe with y termination, for
m ¼ 2.00, 1.64, 1.56. The vertical arrows represent electron spin.
In subplot (b), the helical edge channels around kx ¼ π are
hybridized due to finite size confinement, leaving one pair of
helical edge channels around kx ¼ 0. Thus, these conducting
channels resemble subplot (c).
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on the other hand, arise from the fact that the intervalley
scattering is detuned by the hybridization gap of one of the
valleys.
Besides the emergence of robust helical edge states in

the Z2 ¼ 0 system, which conveniently augments the scope
of study confined in QSHE, our proposal also has certain
advantages over the helical states in Z2 ¼ 1 systems. For
example, the energy window with robust edge channel in
our proposed model can be easily engineered via the
tailoring of the sample width, whereas such a window in
the Z2 ¼ 1 system is difficult to change in experiments.
Figure 3 plots two-terminal conductanceG12;12 as a function
of ϵF under various samplewidthsWy for these two systems.
With increasing Wy, in the Z2 ¼ 0 system the energy
window with robust 2e2=h plateau continuously decreases
from a moderate value to zero [see Figs. 3(a) and 3(b)].
In contrast, the window of plateau in the Z2 ¼ 1 system
is basically equal to bulk gap and insensitive to the width
variation [see Figs. 3(c) and 3(d)]. To be specific, the energy
window, which is appropriately termed an effective energy
gap, in Fig. 3(a) arises from the hybridization gap of the
π helical edge states and can be continuously tuned by
tailoring the sample width [see Fig. 3(b)].
3D model.—Similar phenomena also exist in 3D aniso-

tropic WTIs. We take the anisotropic Wilson-Dirac-type
model as an example [35–40]. The Hamiltonian in a cubic
lattice reads

Hð~kÞ ¼ mð~kÞσ0 ⊗ τz þ
X
α

υα sin kασα ⊗ τx;

mð~kÞ ¼ mþ
X
α

mαðcos kα − 1Þ; (2)

where σ are the Pauli matrices in spin space, and α ¼ x, y,
z. Parameters τ,m, υα,mα have the same meanings as in the
2D model of Eq. (1). Recently, several works have studied

the finite size effect and transport properties of 3D WTIs
[35–39]. These works focus on two cases: (i) isotropic bulk,
i.e., mx ¼ my ¼ mz; (ii) anisotropic bulk but isotropic
xy surface, i.e., mx ¼ my ≠ mz. Interestingly, we find the
combined effects of finite size confinement and anisotropic
surface, i.e.,mx ≠ my, leads to a unique phenomenon in the
xy surface. The anisotropy may be induced by elastic strain
engineering. For example, when an isotropic WTI film is
deposited to a substrate with uniform tensile (compressive)
strain along the x direction, the anisotropic WTI with
mx < my (mx > my) is obtained [see, respectively, regions
II and IV in Fig. 4(d)]. Henceforth, both tensile and
compressive strains are explored in terms of relative values
of mx and my, whereas other parameters are fixed:
m ¼ 2.26, mz ¼ 0.8, υx ¼ υy ¼ υz ¼ 1.5.
Figures 4(a)–(c) schematically display the evolution of

surface energy bands of the anisotropic WTI film. For
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FIG. 2 (color online). [(a),(e)] Schematic plot of two-terminal and π-bar devices . The disorder is considered in the central (red) region.
The size parameters are Lx ¼ 120, Wx ¼ 120, Wy ¼ 60. [(b)–(d)] Two-terminal conductance values G12;12 of device (a);
[(f)–(h)] nonlocal conductance values G14;23 of device (e) versus Fermi energy ϵF for different disorder strengths W at various
m ¼ 2.00 [(b),(f)], 1.64 [(c),(g)], 1.56 [(d),(h)]. The error bars denote the conductance fluctuation.
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sufficiently thick films, two gapless helical surface modes
with Dirac cone Xð0; πÞ and Yðπ; 0Þ exist at the top surface
[see Fig. 4(a)]. X, Y are two valleys analogous to K and K0
in graphene. In thinner films, the finite size confinement
leads to hybridization gaps in helical surface states. As
shown in Fig. 4(b), the valley X remains almost gapless
while the hybridization gap Δs

Y at valley Y is remarkable.
This peculiar feature arises from the fact that the coupling
strength of surface state at X is much weaker than that
at Y, which is due to bulk inverted gaps satisfying Δb

X ¼
2m − 4mx ≫ Δb

Y ¼ 2m − 4my in tensile strained WTI film.
Similar to the 2D case, when ϵF is located inside the
hybridization gap of the Y valley, the X helical surface
states survive, and intervalley scattering is definitely
avoided. In other words, the emerging X helical surface
states are robust and share the common features of those
states in STIs. Moreover, the energy window (effective
energy gap) with robust conducting states can be engi-
neered via varying the sample thickness. Specifically, the
gapped Y valley case and the gapped X valley case can
interconvert by changing the system from tensile strain to
compressive strain [see Fig. 3(c)].
The degree of valley polarization provides a promising

route towards potential quantum applications [41–44]. In
typical valleytronics materials, e.g., graphene, MoS2 etc.,
the band gaps of distinct valleys are related by discrete

symmetry (such as time reversal), making it difficult to
create valley valve and filter devices. In anisotropic WTIs,
the two valleys are not interrelated by any discrete
symmetry. This unique feature provides an experimentally
feasible pathway to independent tuning of the gaps at each
valley, allowing for the construction of interesting valley
devices. Below, we propose a valley filter and valley valve
device based on an anisotropic WTI, as illustrated in
Fig. 4(d). The regions I and V are source and drain, which
can be fabricated by either isotropic or anisotropic thick
WTIs. The regions II and IV are fabricated by thin
anisotropic WTI films with tensile and compressive strain,
respectively. The region III, made by a thick WTI, can relax
the strain from region II to IV. Figures 4(e)–4(g) illustrate
the working mechanism of the device. The valley valve is
illustrated in Fig. 4(e). Because of momentum mismatch,
the electron tunneling in the Y valley is forbidden, and the
surviving X valley electrons in region III can hardly tunnel
to region V. Furthermore, the only biased gate 1 leads to a Y
valley filter [see Fig. 4(f)]. Both X and Y valley electrons
can tunnel from region I to III while Y valley electrons
are admitted after region IV. Similarly, an X valley filter
is obtained by only biased gate 2, as shown in Fig. 4(g).
Moreover, by appropriately tuning the bias of two separate
gates, a 100% X valley polarization can be continuously
switched to 100% Y valley polarization. To emphasize, this
proposed device has two advantages: (i) the complete
valley manipulation can be obtained by current experimen-
tal electric techniques; (ii) the magnitude of valley current
is remarkable with low dissipation, protected by the robust
transport properties of helical surface states.
Materials discussion.—The proposed model with emerg-

ing robust helical surface states could, in principle, be
realized and probed in realistic Z2 ¼ 0 materials. Two
candidate materials are noteworthy [45]. (1) Bismuth
(111) film with a thickness of between 20 and 70 nm, where
the robust helical surface states lead to several experimental
observable phenomena. The surface bands can cross the
Fermi level an odd number of times between two time-
reversal invariant points, and consequently, weak antilocal-
ization behavior is expected. From our model calculations
[45], the effective energy gap is thickness dependent and on
the order of a few tens of meV, suggesting that the proposed
effects can be measured at T ∼ tens of K. Moreover, this
prediction is also highly relevant to an unpublished experi-
ment [46]. (2) The ðSnTeÞ7ðCaTeÞ1ð110Þ superlattice film
with 0.1%–0.4%uniform c-axis tensile strain, with the thick-
ness range of about 100–200 nm for a given strain ratio [45].
The effective energy gap is estimated to be around 1 meV.
Summary.—We demonstrate the emergence of robust

helical edge (surface) states in both 2D and 3D anisotropic
Z2 ¼ 0 systems. The anisotropy and finite size confine-
ment play important roles in realizing such states. These
emerging robust helical states lead to the revival of major
features of Z2 ¼ 1 systems. In addition, the effective
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FIG. 4 (color online). [(a)–(c)] The surface energy bands of
anisotropic WTI film with parameters (a) mx ¼ 0.9, my ¼ 1.1,
Nz ¼ 120; (b) mx ¼ 0.9, my ¼ 1.1, Nz ¼ 20; (c), mx ¼ 1.1,
my ¼ 0.9, Nz ¼ 20. Nz is the sample thickness. (d) Schematic
diagram of the valley filter and valley valve device. The Fermi
energy in region II (IV) can be tuned by the attached gates.
The black arrows with in (out) direction represent the tensile
(compressive) strain. [(e)–(h)] Schematic plots of the working
mechanisms for the device. Open (filled) circles denote the
electrons in XðYÞ valleys.
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energy gap for robust helical states can be engineered by
tailoring sample size. These characteristics have potential
applications as valley filter and valley valve under current
experimental techniques.
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