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Edge engineering of a topological Bi(111) bilayer
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Our first-principles simulations demonstrate the precise engineering of edge states by chemical decoration
in topological Bi(111) bilayer nanoribbons. The chemical passivation removes the trivial edge states, recovers
the Dirac linear dispersion of the topological edge state, and significantly influences both transport and optical
signatures. Our transport simulations show that the Bi(111) bilayer nanoribbon offers an ideal system for assessing
conductance fluctuation of edge states of a quantum spin Hall system by comparing the edge state transport with
and without chemical decoration. The spatial extent and spin texture of edge states also become engineerable
with the chemical decoration.
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I. INTRODUCTION

As an insulating state with symmetry-protected gapless
interface modes, the topological insulator (TI) has received
considerable attention recently [1–3]. The edge conduction
channels of two-dimensional (2d) TI exhibit the quantum
spin Hall effect within the bulk gap [4]. A single bilayer
Bi(111) film has been predicted to be a 2d TI with a large
band gap of about 0.5 eV [5–7], while other 2d TIs, such as
HgTe/CdTe quantum wells [8] and InAs/GaSb quantum wells
[9], have gaps of only several tens of meV at best. Recently,
a Bi(111) bilayer has been readily grown on Bi2Te3 or
Bi2Se3 substrates [10–15], which is highly desirable for room-
temperature TI-based devices. However, the native edges of
a Bi bilayer suffer from the simultaneous presence of both
trivial and nontrivial edge modes [6,12], which complicates the
fundamental transport properties and hinders potential appli-
cations. Similar complication has perplexed the interpretation
of surface states in the three-dimensional (3d) TI Bi1−xSbx

[16,17]. Although localization in Anderson’s paradigm can
suppress trivial conducting channels, quantitatively localizing
trivial channels still manifest an experimental challenge. The
wide distribution of conductance induced by multiple edge
states is not desirable for accurate transport measurements
[6,18,19], or subsequent applications of these materials.

The complicated edge or surface states may be a generic
problem associated with dangling bond states at the termi-
nation interface of 2d or 3d TIs. In this paper, we report a
first-principles analysis of chemical decoration of the edge
states of a Bi(111) bilayer, which provides an effective route for
precise engineering of conducting edge states. We demonstrate
that chemical passivation can quantitatively remove the trivial
edge bands in Bi bilayer nanoribbons, restoring the desired
Dirac dispersion of the nontrivial edges. We further compute
the transport and optical signatures of the Bi bilayer edges with
chemical decoration. In particular, conductance fluctuation
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in one-dimensional quantum spin Hall edge channels is a
fundamental property important to device performance, but it
has not been adequately studied for lack of precise control of
the edge states. Therefore, based on the chemical decoration
of the edge states of the Bi(111) bilayer, we use transport
simulations to show that the Bi bilayer nanoribbons, with
or without chemical passivation, offer a typical system for
assessing conductance fluctuation of a quantum spin Hall
system. Moreover, the edge decoration has remarkable impact
on the spatial distribution and spin texture of the edge states.

II. COMPUTATIONAL METHODS

We use density functional theory (DFT) [20] calculations
within the generalized gradient approximation (GGA) [21,22]
to investigate geometric and electronic structure of a single
Bi(111) bilayer and its nanoribbons. The projector aug-
mented wave potentials [23] and the Perdew-Burke-Ernzerhof
exchange-correlation functionals [22] are used with a plane-
wave cutoff of 400 eV, as implemented in the Vienna ab initio
simulation package [23,24]. Vacuum slabs of at least 15 Å
thick are inserted between the Bi(111) bilayer/nanoribbons
and its/their images. Structure optimizations are performed
with a convergence threshold of 0.01 eV/Å on the interatomic
forces for every atom in these systems. Notice that spin-orbit
coupling (SOC) is included in the calculation of electronic
structure, unless otherwise specified.

III. RESULTS

A. Bi(111) bilayer

The single Bi(111) bilayer has the point group symmetry
of D3d with spatial inversion included. As shown in Fig. 1,
the top view of a Bi(111) bilayer shows a bipartite honeycomb
lattice with A and B sublattices. Two sublattices have different
heights, forming the bilayer structure. The calculated nearest-
neighbor bond angles in a single Bi bilayer is 91◦ and the
lattice constant a = 4.34 Å.

We begin with a review of the basic electronic structure
of the single Bi(111) bilayer, which has been studied in
previous work [6,7]. Figure 2 shows the band structures and
the corresponding wave-function parity eigenvalues of single

1098-0121/2014/90(16)/165412(8) 165412-1 2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.90.165412


XIAO LI, HAIWEN LIU, HUA JIANG, FA WANG, AND JI FENG PHYSICAL REVIEW B 90, 165412 (2014)

 x
y

y
 x(a)

(b) 1

1
2 3

4 5 6 7

2
3

4
5 6 7

A B

A
B

FIG. 1. (Color online) Geometric structures of the (a) zigzag
and (b) armchair Bi(111) nanoribbons. Upper diagram: top view;
lower: side view. The zigzag and armchair edges are perpendicular
to each other, which are along the x and y axis of the Bi(111)
sheet, respectively. The supercell containing the nanoribbon and
the vacuum space separating periodic images is indicated by the
dashed box. The purple ball stands for bismuth atom and the pink
ball for hydrogen atom. The numbers near the bismuth atoms denote
different adsorption sites in our calculation. The hydrogen-terminated
edges shown in the figure are the most stable structure of hydrogen
adsorption. Iodine-terminated nanoribbons have similar structures
and are not shown.

Bi(111) bilayer with and without considering SOC, using
the calculated lattice constant of the single Bi(111) bilayer,
a = 4.34 Å. As shown in Fig. 2(a), there are six bands
composed of p orbitals of the bismuth atoms near the Fermi
energy, while the s-like bands are far away from the Fermi
energy. All bands with SOC are necessarily doubly degenerate,
owing to simultaneous time-reversal and inversion symmetry.
At the � point, there is a direct band gap of 0.59 eV. The top
of the valence band near the � point assumes a Mexican-hat
shape, and there is a smaller indirect band gap of 0.50 eV.
We compute the wave-function parity eigenvalues at four
time-reversal invariant points in the Brillouin zone (the � point
and three M points) [16]. The topological invariant Z2 = 1,
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FIG. 2. (Color online) Band structure and corresponding wave-
function parity eigenvalues of single Bi(111) bilayer (a) with
considering spin-orbit coupling (SOC) and (b) without SOC. The
inset of (a) zooms in on two inverted bands at �. The red lines
show the bands described by the low-energy effective Hamiltonian
in Eqs. (3) and (4). The highest occupied energy level is set to zero
energy.

showing that the Bi(111) bilayer is a 2d topological insulator
[7]. Compared with parity eigenvalues without considering
SOC [Fig. 2(b)], the band inversion takes place between
the highest valence band and the lowest conduction band
at � point. Besides, it must be emphasized that the parity
eigenvalues depend quite sensitively on the lattice constant.
Using the in-plane lattice constant of single-crystal bismuth,
a = 4.58 Å, the parity eigenvalues of six p-like bands with
SOC become +/−/+/+/−/− at the � point from the lower
band to the higher band, while the parity eigenvalues with SOC
at M points and the ones without SOC at both � and M points
are unchanged, compared with the results of a = 4.34 Å.
Therefore, for a = 4.58 Å, the exchange of parities arises
between the second valence band and the lowest conduction
band, in agreement with the results of Ref. [6].

B. Band structure of Bi(111) nanoribbon

To investigate the edge properties of the Bi(111) nanorib-
bons, we study two representative model systems: (1) a 40-
atom (per unit cell) zigzag nanoribbon (about 7.3 nm wide) and
(2) a 50-atom (per unit cell) armchair nanoribbon (about 5.2 nm
wide) (Fig. 1). For nanoribbons with native edges, the band
structures are shown in Figs. 3(a) and 3(d). All bands remain
spin degenerate because of simultaneous time-reversal and
inversion symmetry. Within the bulk band gap, the nontrivial
and trivial edge states are present simultaneously, which span
the entire Brillouin zone (BZ). There are odd numbers of
Kramers pairs of edge states at the Fermi energy, indicating
that the Bi(111) bilayer is indeed a 2d topological insulator.
If we sweep the chemical potential across the gap by external
gating, the number of conducting channels may change from
3 to 1 (or from 1 to 3).

Given that the atomic edge adsorption of graphene nanorib-
bons has been achieved via hydrogen plasma etching recently
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FIG. 3. Band structures of Bi(111) nanoribbons with considering
SOC. Zigzag nanoribbons with (a) native edges, (b) hydrogen-
terminated edges, and (c) iodine-terminated edges. And armchair
nanoribbons with (d) native edges, (e) hydrogen-terminated edges,
and (f) iodine-terminated edges. The highest occupied energy level is
set to zero energy. kx ≡ kxa and ky ≡ √

3kya.
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TABLE I. Adsorption energies of hydrogen and iodine atoms on
zigzag and armchair Bi(111) nanoribbons.

Eads (eV) Site 1 Site 2 Site 3 Site 4 Site 5 Site 6 Site 7

H-zigzag −0.11 1.17 0.66 0.39 0.35 0.87 0.88
I-zigzag −1.28 −1.08 −0.88 −0.97 −0.90 −0.40 −0.40
H-armchair 0.46 0.96 1.32 0.87 1.02 1.08 1.09
I-armchair −0.84 −0.35 −0.67 −0.58 −0.33 −0.31 −0.31

and the edge decoration has important effects on electronic
properties of graphene nanoribbons [25–27], the edge states of
topological Bi(111) nanoribbons may be modified by chemical
adsorption. Then we study the adsorption of hydrogen and
iodine atoms on zigzag and armchair Bi(111) nanoribbons.
For one hydrogen or iodine atom adsorption, the adsorption
energy is defined as Eads = Erib+H/I − Erib − 1

2EH2/I2 . Here,
Erib+H/I denotes the total energy of the adsorbed system, Erib

denotes the energy of zigzag or armchair Bi(111) nanoribbon,
and EH2/I2 denotes the energy of a single hydrogen/iodine
molecule. In Fig. 1, we show different initial adsorption sites
considered from the edge to the middle part of the nanoribbons.
According to the adsorption energies listed in Table I, the most
stable adsorption site is the edge of the nanoribbon, which has
lower adsorption energy than other sites. We have also tested
the adsorption of two hydrogen atoms on the zigzag nanorib-
bon, with one adsorbate located at the edge and the other one
moved across the nanoribbon. The most stable structure is
two hydrogen adsorption at the opposite edges, as shown in
Fig. 1. It will lead to selective edge decoration in the
experiment, similar to the graphene nanoribbon [27]. The
adatoms restore three-fold coordination of bismuth at two
edges, indicating that the dangling bonds become saturated.

Figures 3(b)–3(c) and 3(e)–3(f) show the band structures
after the chemical decoration for zigzag and armchair nanorib-
bons, respectively. Compared with native nanoribbons, there
are only linear dispersive nontrivial edge states in the center
of BZ, while the trivial edge states are removed. The Fermi
velocities are 8.5 × 105 and 7.9 × 105 m/s for hydrogen- and
iodine-terminated zigzag nanoribbons, respectively. And the
values are 7.7 × 105 and 7.3 × 105 m/s for hydrogen- and
iodine-terminated armchair nanoribbons, respectively.

Figure 4 further shows the band structures of Bi(111)
nanoribbons without considering SOC. For the native edge,
the edge states within the bulk gap are trivial ones in the
absence of SOC [Figs. 4(a) and 4(d)]. With the atom adsorption
at two edges, the trivial edge states are removed from the
bulk gap [Figs. 4(b)–4(c) and 4(e)–(f)]. Therefore, taking into
account SOC in our calculation, the emergent edge states
[Figs. 3(b)–3(c) and 3(e)–3(f)] after chemical decoration are
only nontrivial ones, resulting from the band inversion of TI.

C. Transport and optical signatures

Considering the significant modification of the edge bands
by chemisorption, we suggest the effects of edge engineering
can be directly probed by transport and optical measurements.
The key effect of edge chemisorption is turning the number of
edge conduction channels from three in the native nanoribbon
to only one. This creates an interesting experimental apparatus
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FIG. 4. The same as Fig. 3, but without considering SOC.

to assess the effects of localization in Anderson’s paradigm.
We expect that in the case of a single nontrivial edge channel,
the conduction will stay quantized and will not be affected
by nonmagnetic Anderson impurities. On the other hand, the
simultaneous presence of both nontrivial and trivial edge chan-
nels will show rather different transport behavior. Sufficiently
strong disorder will eventually localize the trivial channels.
However, in the intermediate localization regime, we may
have an ideal window to detect disorder-induced conductance
fluctuation in one-dimensional conducting channels [18]. As it
is feasible to fine tune the edge decoration with, e.g., chemical
dosing, this system provides an ideal and simple platform for
systematic study of the conductance fluctuation in a quantum
spin Hall system. The edge modification will also change the
optical absorption of the material, which can also be measured
experimentally. Therefore, taking zigzag Bi(111) nanoribbons
as an example, we study transport and optical spectra of
Bi(111) nanoribbons.

To obtain the conductance and the dielectric function of
Bi(111) nanoribbons, we perform full-valence tight-binding
(TB) model calculations based on Wannier function from
first-principles results [28,29]. The TB Hamiltonian includes
the nearest-neighbor and the next-nearest-neighbor hoppings
between p-like Wannier bases projected from bismuth atoms.
We symmetrize the TB Hamiltonian of the single Bi(111)
bilayer by D3d symmetry operations and the TB Hamiltonian
can reproduce the band structure in Fig. 2 with a smaller
band gap (0.5 eV gap in DFT calculation and 0.4 eV in
TB Hamiltonian). The nanoribbon Hamiltonian takes into
account on-site energy corrections and hopping corrections of
the edge atoms, which can give the similar band structures
in Figs. 3(a), 3(b), 4(a), and 4(b). We then construct a
two-terminal device by the TB Hamiltonian to study the
transport properties of disordered zigzag Bi(111) nanoribbons
based on the nonequilibrium Green’s function method [30–33].
Here, the terminals are modeled by the perfect semi-infinite
leads with the same parameters as the central region. The
self-energies of the leads, �r , are calculated using the method
in Ref. [34]. The disorder in the central region is introduced
by the random on-site potential uniformly distributed in the

165412-3



XIAO LI, HAIWEN LIU, HUA JIANG, FA WANG, AND JI FENG PHYSICAL REVIEW B 90, 165412 (2014)

0

4

8

12
G 

(e
 /

h)
2

0 0.2 0.40.3 0.50.1-0.1
E (eV)

Bulk Gap

0 0.2 0.30.1-0.1
E (eV)

0 eV
0.05 eV
0.10 eV
0.20 eV
0.40 eV
0.80 eV

0
0.3
0.6

W (eV)
0 0.5 1.0

0

4

8

(a)

-0.2-0.3 0.4

δG
 (e

 /
h)

2

Bulk Gap

(b)

G 
(e

 /
h)

2

FIG. 5. (Color online) Conductance G as a function of chem-
ical potential for (a) native and (b) hydrogen-terminated zigzag
nanoribbons. Under Anderson disorders of different strengths W ,
the conductances of the nanoribbons are shown in different colors
and symbols. The bar on every data point represents the conductance
fluctuation δG. The inset of (a) shows the conductance fluctuation
as a function of W . The Fermi energy is set to zero. The blue line
stands for the edge states at 0.05 eV. The red line stands for the ones
at 0.25 eV, which remain at zero.

energy range [−W
2 ,W

2 ], where W is the disorder strength [35].
The conductance G(E) at fixed chemical potential E can be
computed via the formula [30–32]

G(E) = e2

h
Tr[�S(E)Gr (E)�D(E)Ga(E)], (1)

where �S/D(E) = i{�r
S/D(E) − [�r

S/D(E)]+} is the linewidth
function of source/drain leads, Gr (E) = [Ga(E)]+ = [E −
Hcen − �r

S(E) − �r
D(E)]−1 is the retarded Green’s function,

Hcen is the Hamiltonian of the central region and h is the Planck
constant.

Figure 5 shows the transport spectra of zigzag Bi(111)
nanoribbons [31]. For the native zigzag nanoribbon, the
conductance is found to be 6e2/h at the Fermi energy, as
expected and also consistent with experimental measure [19].
The conductance of edge states changes from 6e2/h to 2e2/h

as the chemical potential is gated up within the bulk band gap,
leaving only the contribution from the nontrivial edge state.
Upon introduction of the Anderson disorder to the model, the
conductance from the trivial edge gradually decays with the
increasing strength of disorder in the neighboring of the Fermi
energy [Fig. 5(a)], indicating localization. At the same time,
the simulations reveal significant conductance fluctuation, δG.
We see that δG first increases with weak Anderson disorder,
but eventually decreases to zero upon complete localization
of trivial edge channels [the inset of Fig. 5(a)]. For hydrogen-
terminated zigzag nanoribbon, the conductance stays at the
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FIG. 6. (Color online) Imaginary part of the dielectric tensor
component ε(2)

xx (ω), as a function of the optical frequency ω for
zigzag nanoribbons. The Fermi energy is set to zero energy. The
native edge and the hydrogen-terminated edge are shown in blue and
red, respectively.

quantized platform of 2e2/h without any fluctuations within
the bulk band gap, as shown in Fig. 5(b). We also investigate
the effect of less-than-full adsorption along two edges of the
nanoribbon with random occupancy of the adsorbed hydrogen
atoms. It is found that 25% coverage of the edges with
hydrogen adsorption can give rise to a similar conductance
plateau of 2e2/h as the one of 100% hydrogen adsorption,
indicating that it is feasible to improve the transport properties
by partial edge decoration.

To obtain optical properties of zigzag nanoribbons under
the x-polarized irradiation field, we compute the imaginary
part of the dielectric tensor component, ε(2)

xx (ω). This quantity
is defined as [36]

ε(2)
xx (ω) = α

ω2

∑
i,f,kx

|〈ψf (kx) |px | ψi(kx)〉|2

× δ[Ef (kx) − Ei(kx) − �ω] (2)

where px is the momentum operator along the x direction,
ω is the angular frequency of the irradiation field, and α

is a constant. Ei(kx) and Ej (kx) are the eigenvalues of the
occupied and unoccupied states, respectively, while ψi(kx)
and ψj (kx) are corresponding wave functions. Figure 6 shows
ε(2)
xx (ω) of the zigzag nanoribbon. Without chemical decoration,

nonzero dielectric function shows that there are always optical
transitions between edge states or between edge states and
bulk states. However, these transitions are inhibited to a great
extent for the hydrogen-terminated zigzag nanoribbon. These
observable characteristics can be used as signals of the edge
decoration of Bi(111) nanoribbons.

D. Penetration depth and spin texture

Alongside the change of the band structure and the
corresponding experimental signatures, the penetration depth
and spin texture of edge states have been modified by edge
engineering. Figure 7 shows the change of the penetration
depth with atomic adsorption for the zigzag nanoribbon. For
the zigzag nanoribbon with native edges, only one band of
each group of the spin-degenerate edge bands are presented in
the half of the BZ (kxa from −π to 0), and other states can
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FIG. 7. (Color online) Penetration depth of the edge states of
zigzag nanoribbons as a function of the momentum kx . (a) The native
edge. (b) The hydrogen-terminated edge. The blue circle and red
square, respectively, denote the upper and lower edge energy bands
in Figs. 3(a) and 3(b).

be obtained by the inversion and time-reversal symmetry. For
hydrogen-terminated nanoribbon, the edge states are presented
in the smaller zone of the BZ (−π/5 to 0) to zoom in on the
linear dispersion. The penetration depth is very short for both
the upper [blue circle in Fig. 7(a)] and lower (red square)
edge states of the 7.3 nm-width zigzag nanoribbon without
any termination. For states away from the bulk states (kxa

near −π ), they are localized within 1 nm closest to the edge.
When the edge state approaches the bulk states (kxa near
0), the penetration depth gradually increases. In contrast, the
penetration depths of the hydrogen-terminated edge states are
much longer than the ones of the native edges [Fig. 7(b)].
Besides, the penetration depth is also getting longer for the
hydrogen-terminated edge, when the edge state approaches
the bulk states (kxa from 0 to −π/5).

The spin moments, mx , my, and mz, for the Bi(111)
zigzag nanoribbons are shown in Fig. 8(a). Compared with
the Kane-Mele model [4] and HgTe/CdTe quantum wells
[8], the edge states of Bi(111) nanoribbons have more
complicated spin textures. For the native zigzag nanoribbon,
the components my and mz, perpendicular to the momentum
kx of the zigzag edge, vary gradually and the spin direction
rotates with the momentum. The component mx , parallel to
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FIG. 8. (Color online) Spin texture of edge states. (a) The zigzag
nanoribbons. (b) The armchair nanoribbons. The blue circle, red
square, and green triangle stand for three components of spin moment,
mx , my, and mz, respectively. Here kx ≡ kxa. In (b), only the spin
components for the upper edge energy bands in Figs. 3(a) and 3(b)
are shown, while the lower ones behave in the same manner.

the momentum, is zero. It is similar to the interface state of
well-known topological insulators, such as the natural cleavage
(111) surface of Bi2Se3, where the spins are locked to their
momentums at right angles [1]. For the hydrogen-terminated
zigzag edge, my and mz have altered their trends and varied
slowly in the momentum space near the Dirac point, with
mx = 0. The armchair edges have similar spin textures with
zigzag edges, where mx is still zero, as shown in Fig. 8(b).
Given that the momentum direction is along the y axis for
armchair edges, the spin is no longer perpendicular to the
momentum, in contrast with the spin-momentum orthogonality
in well-known TIs [1,4,8]. This departure can be explained by
our effective model of single Bi(111) bilayer.

We suggest a low-energy effective Hamiltonian of the single
Bi(111) bilayer based on the symmetry analysis. (See details
in Appendix.) Considering the inversion symmetry of a single
bilayer, we combine the p orbitals near the Fermi energy
to form the bonding and antibonding states with definite
parity, |p±

λ 〉 = 1√
2
(|pA,λ〉 ∓ |pB,λ〉), where pλ = px,y,z stand

for three p orbitals, and A and B stand for the A, B
sublattices of the honeycomb lattice. The superscripts ±
correspond to even and odd parity, respectively. Taking into
account the band splitting from both crystal field and SOC,
the band inversion mainly arises between degenerate states
|p−

z ,± 1
2 〉 and degenerate states |p+

x,y,± 3
2 〉 near �, where ± 1

2

and ± 3
2 denote the corresponding total azimuthal quantum

numbers. Then we construct four Wannier bases, |α−〉, |β+〉,
T̂ |α−〉, and T̂ |β+〉, to describe the low-energy excitations
of single Bi(111) bilayer, where |α−〉 = |p−

z , 1
2 〉 and |β+〉 =

N0(|p+
x,y,

3
2 〉 + η|p+

x,y,− 3
2 〉). T̂ is the time-reversal operator,

N0 is the normalization factor, and η is the weight factor. The
effective Hamiltonian near � is separated into two subblocks:

H(k) =
[
H (k) 0

0 H ∗(−k)

]
, (3)

H (k) = m[σz + k2(λ2σ0 − ξ 2σz)] + �v(kxσx − kyσy), (4)

where σi (i = x,y,z,0) are the Pauli matrices addressing
the subspace spanned by |α−〉 and |β+〉. The parameters
m = 0.291 eV, λ = 14.11 Å, ξ = 15.51 Å, and v = 1.079 ×
106 m/s are obtained by fitting the DFT band structure of the
Bi(111) bilayer near the � point, as shown in Fig. 2(a).

The Hamiltonian leads to topological edge states with clean
linear dispersion and a Fermi velocity of 6.0 × 105 m/s,
agreeing with our first-principles results. Moreover, when the
spin Pauli matrix sx acts on the bases, we have 〈ϕ| sx |ϕ〉 = 0,
where ϕ = α−,β+. That is, the low-energy bulk bands have
vanishing mx , and so do the topological edge states of both
zigzag and armchair edges, which arise from the bulk band
inversion. The nonzero my and mz can also be obtained by
the Hamiltonian. This explains the distinctive spin-momentum
relationship in the Bi(111) bilayer.

IV. SUMMARY

In summary, with first-principles calculations we have
shown the important roles of the chemical decoration on the
conducting edge states of the topological Bi(111) bilayer.
The edge decoration removes the trivial edge bands, restores
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the desired Dirac dispersive edge states, and has significant
effects on both transport and optical signature of the Bi(111)
bilayer nanoribbons. In particular, the chemical modification
offers a promising pathway to assess and control conductance
fluctuation of edge states. The ability to tune the conductance
fluctuation is an important step toward TI-based devices.
Moreover, the edge decoration also modifies the spatial
distribution and spin texture of edge states. A low-energy
effective model is proposed to explain the distinctive spin
texture of Bi(111) bilayer nanoribbons. Clean edge states and
the effective Hamiltonian proposed in the paper will facilitate
further investigations on topological properties of the Bi(111)
bilayer, such as the superconducting proximity effect [37] and
topological Anderson insulator [38].
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APPENDIX: LOW-ENERGY EFFECTIVE MODEL

We propose a low-energy effective Hamiltonian near the
� point of a single Bi(111) bilayer based on the symmetry
analysis, similar to that for Bi2Se3 [39]. Considering the
inversion symmetry of a single Bi(111) bilayer, we combine
the p orbitals of two bismuth atoms in a unit cell to form the
bonding and antibonding states with definite parity, |p±

λ 〉 =
1√
2
(|pA,λ〉 ∓ |pB,λ〉), where pλ = px,y,z stand for three p

orbitals and A, B for the sublattices A and B of the honeycomb
lattice. The superscript signs, ±, denote the even and odd
parity, respectively. Moreover, there is an energy splitting
between pz and px,y orbitals for the 2d system. Based on
the first-principles results, px,y orbitals have higher energies
than the pz orbital. We further take into account the effect from
spin-orbit coupling. Besides the small hybridization between
|p−

z ,± 1
2 〉 (that is, |p−

z,↑〉 and |p−
z,↓〉) and |p−

x,y,± 1
2 〉 (|p−

x+iy,↓〉
and |p−

x−iy,↑〉), the band inversion mainly takes place between

degenerate states |p−
z ,± 1

2 〉 and degenerate states |p+
x,y,± 3

2 〉
(that is, |p+

x+iy,↑〉 and |p+
x−iy,↓〉). Here, ± 1

2 and ± 3
2 denote

the corresponding total azimuthal quantum numbers. ↑ and
↓ denote up and down spin, respectively. These stages of the
evolution from atomic px,y,z orbitals of Bi atoms into the
conduction and valence bands of the single Bi(111) bilayer at
the � point are shown in Fig. 9.

Based on the double group representation of D3d [40],
two valence states |p−

z ,± 1
2 〉 belong to the 2d representation,

�−
6 . The combinations of two conduction states, |p+

x,y,�̃
+
4 〉 =

1√
2
(|p+

x,y,
3
2 〉 + |p+

x,y,− 3
2 〉) and |p+

x,y,�̃
+
5 〉 = 1√

2
(|p+

x,y,
3
2 〉 −

|p+
x,y,− 3

2 〉) belong to two one-dimensional representations, �̃+
4

and �̃+
5 , respectively. Therefore, the double group for inverted

bands can be divided into two 2-dimensional representations:
�̃−∗

6 ⊗ (�̃+
4 + �̃+

5 ) = �̃−
3 + �̃−

3 .
In the Hilbert space of four bases, |p−

z ,+ 1
2 〉, |p+

x,y,�̃
+
4 〉,

|p−
z ,− 1

2 〉, and |p+
x,y,�̃

+
5 〉, we can provide two groups of �

Bi
Bi′

Px,y,z
_

Px,y,z
+

Px,y
_

Pz
_

Pz
+

Px,y
+

Px+iy, 
_

,Px-iy, 
_

Px+iy, 
_

,Px-iy, 
_

Px+iy, ,Px-iy, 

Px+iy,   
+

,Px-iy, 
+

Pz,
+

,Pz,
+

Pz,
_

,Pz,
_

+ +(I)

(II)
(III)

FIG. 9. (Color online) Schematic of the evolution from the
atomic px,y,z orbitals of bismuth atoms into the conduction and
valence bands of single Bi(111) bilayer at � point. Three stages
(I), (II) and (III) take into account the effects from chemical bonding,
crystal-field splitting and SOC, respectively. The green dashed line
stands for the chemical potential. Note that the pz orbitals slightly
hybridize with px,y orbitals at stage (III).

matrices, {�a
1 , �b

1} and {�a
2 , �b

2}, as two groups of bases for two
2d �̃−

3 representations, respectively. Here, �a
1 = σy ⊗ τy −

σx ⊗ τ0, �a
2 = σy ⊗ τz + σy ⊗ τx , �b

1 = σy ⊗ τz − σy ⊗ τx ,
and �b

2 = σx ⊗ τ0 + σy ⊗ τy . Both σi and τi (i = x,y,z,0) are
Pauli matrices.

According to Table II, we can obtain the transformation
matrices of symmetry operations in the aforementioned Hilbert
space. The matrices of the time-reversal operator T̂ , the
inversion operator P̂ , the three-fold rotation operator around
the z axis, R̂3, and the two-fold rotation operator around the x

axis, R̂2, are shown as follows:

T =

⎡
⎢⎢⎢⎣

0 0 1 0

0 0 0 −1

−1 0 0 0

0 1 0 0

⎤
⎥⎥⎥⎦K, P =

⎡
⎢⎢⎢⎣

−1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 1

⎤
⎥⎥⎥⎦ ,

R3 =

⎡
⎢⎢⎢⎣

ei π
3 0 0 0

0 −1 0 0

0 0 e−i π
3 0

0 0 0 −1

⎤
⎥⎥⎥⎦ ,

R2 =

⎡
⎢⎢⎢⎣

0 0 −i 0

0 i 0 0

−i 0 0 0

0 0 0 −i

⎤
⎥⎥⎥⎦ ,

where K is the complex-conjugate operator.

TABLE II. Transformation of the inverted states |p−
z ,± 1

2 〉 and
|p+

x,y,± 3
2 〉 under symmetry operations.

T̂ P̂ R̂3 R̂2

|p−
z ,± 1

2 〉 ±|p−
z ,∓ 1

2 〉 −|p−
z ,± 1

2 〉 e±i π
3 |p−

z ,± 1
2 〉 −i|p−

z ,∓ 1
2 〉

|p+
x,y,± 3

2 〉 ±|p+
x,y,∓ 3

2 〉 |p+
x,y,± 3

2 〉 −|p+
x,y,± 3

2 〉 i|p+
x,y,∓ 3

2 〉
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By operating the transformation matrices on � matrices,
we can obtain

T �α
j T −1 = −�α

j ,

P�α
j P−1 = −�α

j ,

R3�
α
1R−1

3 = �α
1 cos

2π

3
− �α

2 sin
2π

3
,

R3�
α
2R−1

3 = �α
1 sin

2π

3
+ �α

2 cos
2π

3
,

R2�
α
1R−1

2 = �α
1 ,

R2�
α
2R−1

2 = −�α
2 ,

where α = a,b and j = 1,2.

These two groups of � matrices, {�a
1 , �a

2} and {�b
1 , �b

2},
behave like {kx,ky} under symmetry operations. An effective
Hamiltonian immediately follows:

H (k) = E0 − Ak2 + (−B1 + B2k
2)P + (C + Dk2)

× [
�a

1ky − �a
2kx

] + (E + Fk2)
[
�b

1ky − �b
2kx

]
.

By neglecting the k3 term and making a unitary transfor-
mation, we can obtain a block diagonal Hamiltonian with
a group of new bases |α−〉, |β+〉, T̂ |α−〉, and T̂ |β+〉,
that is,

H(k) =

⎡
⎢⎢⎢⎢⎣

E0 + B1 − B+k2
√

C2 + E2k+ 0 0√
C2 + E2k− E0 − B1 + B−k2 0 0

0 0 E0 + B1 − B+k2 −√
C2 + E2k−

0 0 −√
C2 + E2k+ E0 − B1 + B−k2

⎤
⎥⎥⎥⎥⎦ . (A1)

Here, |α−〉 = |p−
z , 1

2 〉, |β+〉 = N0(|p+
x,y,

3
2 〉 + η|p+

x,y,− 3
2 〉),

η = E
C

, k2 = kx
2 + ky

2, k+ = kx + iky , and k− = kx − iky .
We reproduce the band structure of the single Bi(111) bilayer
near � by Eq. (A1), as shown in the inset of Fig. 2(a). The
parameters E0 = 0.137 eV, B1 = 0.291 eV, B+ = B2 + A =
12.1 eV Å2, B− = B2 − A = 127.9 eV Å2 and

√
C2 + E2 =

7.1 eV Å. We can also rewrite the Hamiltonian in the compact
form, as shown in the text, with m = B1, λ2 = − A

B1
, ξ 2 = B2

B1
,

and �v = √
C2 + E2.

To solve the Hamiltonian in Eq. (A1), we have the energy
dispersion

ε(k) = E0 − Ak2 ±
√

(B1 − B2 k2)2 + (C2 + E2)k2.

An important physical property of a nontrivial topological
insulator is the existence of topological edge states. We can
solve the zigzag edge states in the space y > 0 by replacing ky

with −i∂y in the top subblock of Hamiltonian (A1) [41], that is,

H (k)

=
[
E0 + B1 − B+

(
k2
x − ∂2

y

) √
C2 + E2(kx + ∂y)√

C2 + E2(kx − ∂y) E0 − B1 + B−
(
k2
x − ∂2

y

)
]

.

Using the Dirichlet boundary condition � (kx,y = 0) =
� (kx,y = +∞) = 0, the spinor eigenfunction of the edge

state has the form

� =
(

c (kx)

d (kx)

)
[e−λ1y − e−λ2y],

where λ2
1,2 = k2

x + M ±
√

M2 − B2
1 −ε′2

B2
2 −A2 (λ1,2 > 0), M =

C2+E2−2(B1B2+A ε′)
2(B2

2 −A2)
, and ε′ is the energy of the edge states.

The ratio of the two spinor components near � point can be
obtained,

c (kx)

d (kx)
=

√
C2 + E2

(B2 + A) (λ1 + λ2)
=

√
B2 − A

B2 + A
+ (B2 − A) kx√

C2 + E2
.

By projecting the spin matrices on the eigenfunctions
of edge states, we have the spin texture of the edge
states,

my = d2 (kx)

c2 (kx) + d2 (kx)

η�

(1 + η2)
,

mz = −�

2

(
c2 (kx)

c2 (kx) + d2 (kx)
+ d2 (kx)

c2 (kx) + d2 (kx)

1 − η2

1 + η2

)
,

mx = 0.
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