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Cold atoms tailored by an optical lattice have become a fascinating arena for simulating quantum physics. In
this area, one important and challenging problem is creating effective spin-orbit coupling (SOC), especially for
fashioning a cold atomic gas into a topological phase, for which prevailing approaches mainly rely on the Raman
coupling between the atomic internal states and a laser field. Herein, a strategy for realizing effective SOC is
proposed by exploiting the geometric effects in the effective-mass theory, without resorting to internal atomic
states. It is shown that the geometry of Bloch states can have nontrivial effects on the wave-mechanical states
under external fields, leading to effective SOC and an effective Darwin term, which have been neglected in the
standard effective-mass approximation. It is demonstrated that these relativisticlike effects can be employed to
introduce effective SOC in a two-dimensional optical superlattice, and induce a nontrivial topological phase.
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In recent years, topological insulators, in which spin-orbit
coupling (SOC) plays a central role, have become a focal
spot in condensed-matter physics [1,2]. Cold-atom systems,
due to their extreme cleanness and high controllability, are
expected to be an ideal platform for exploring various phe-
nomena related to topological matter as well as the interplay
between topology and interaction. In order to synthesize a
topological insulator in cold-atom systems, and to explore
the many intriguing effects of SOC itself on cold atoms that
have no analog in solid-state systems, it is important to create
artificial SOC in neutral atoms [3–7]. This is not an easy
task, although quite a few schemes have been theoretically
proposed [8–18]. Based on these schemes, effective SOC has
been achieved experimentally in both one-dimensional [19–
25] and two-dimensional (2D) [26,27] cold-atom systems.
These methods mainly rely on the coupling of the atom’s in-
ternal states through an additional Raman laser field. Because
different types of atoms have different internal excitation
structures, these methods are limited by the availability of
suitable internal levels that afford Raman coupling and by
the lifetime of the excited states. Another problem is that
the spontaneous emission between internal states leads to the
heating of quantum gases or atom loss.

In this Rapid Communication, an approach is proposed for
the realization of effective spin-orbit coupling by exploiting
the geometric effects in the effective-mass theory. The ge-
ometric effect is revealed in relativisticlike terms in a new
effective-mass equation derived herein. When applied to a
cold-atom system in an optical superlattice, this theory leads
to effective relativistic effects without utilizing the internal
structure of the atoms, because the SOC effect emerges
from the geometry of the Bloch bands of the host lattice.
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Consequently, this approach is expected to be versatile for
various types of atoms, free of heating and atom loss due
to spontaneous emission. A model 2D optical superlattice is
devised to demonstrate the effective SOC effect, which is
shown to indeed lead to a topologically nontrivial phase. This
approach can be naturally applied to 3D cases.

The effective-mass theory [28–32], initially formulated
for an elementary understanding of shallow impurity states
in semiconductors, has played a vital role in semiconductor
physics. It also has found wide applications in the quantum
physics associated with general imperfections of a lattice such
as intercalation, quantum dot, and boundaries, and with the
motion of electrons in a crystal under external fields [33–40].
However, the geometric effects of Bloch electrons in asso-
ciation with the Berry curvature and quantum metric, which
have drawn a great deal of attention for decades, are con-
spicuously absent in the traditional effective-mass equation.
Consequently, we start by extending the effective-mass ap-
proximation to a higher order aiming to capture the geometric
effects arising from the Bloch bands. It is shown that the
geometric effects are embodied in the Berry curvature and
quantum metric tensor, which lead to unusual corrections
to the traditional effective-mass approximation, bearing a
remarkable resemblance to the SOC and Darwin term in
the nonrelativistic approximation of the Dirac equation [41].
Though the effective-mass equation has traditionally been
developed in an electronic structure context, as our cold-
atom application demonstrates, the higher-order effective-
mass equation can be profitably employed to understand and
tailor wave-mechanical states associated with an imperfection
on a host lattice, including crystals, optical lattices, and artifi-
cial superstructures.

In deriving the standard effective-mass equation, a key
quantity is the inner product of the cell-periodic parts of
Bloch wave functions at different k points, 〈unk|un′k′ 〉. This
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overlap reflects the metric change of the Hilbert spaces of
distinct k points when the Brillouin zone is viewed as a
manifold, and is associated with such geometric quantities as
the Berry curvature and quantum metric [42–45]. Nonethe-
less, this important geometric quantity is taken as δnn′ in the
traditional effective-mass approximation [32]; that is, at this
level of approximation a trivial geometry is always adopted,
which can otherwise have a highly nontrivial manifestation.
For example, the geometric effect has been suggested to play
an important role in the excitonic states in 2D semiconduc-
tors [46,47].

We begin by formulating the impurity problem. For a per-
fect lattice with Hamiltonian H0 respecting discrete transla-
tional symmetry, its eigenstates are the Bloch wave functions
|ψnk〉, with corresponding eigenenergies εn(k), n being the
energy band index and h̄k the crystal momentum. When an
impurity is placed in a perfect host lattice, the stationary
Schrödinger equation is

(H0 + U )|�〉 = E|�〉, (1)

where the impurity potential U breaks the discrete transla-
tional symmetry of the host lattice. The eigenstate |�〉 can
be expanded as

|�〉 =
∑

n

∫
BZ

[dk]Fnk|ψnk〉, (2)

in which Fnk is the expansion coefficient, and we use the
notation [dk] → Vcd

d k/(2π )d with Vc being the volume of
a primitive cell and d the dimensionality. The expansion (2)
leads to a set of linear equations of Fnk,

εn(k)Fnk +
∑
n′

∫
BZ

[dk]〈ψnk|U |ψn′k′ 〉Fn′k′ = EFnk. (3)

Up to this point, the formulation is exact given the
Schrödinger equation (1). Several standard approximations
are introduced in the traditional effective-mass approxima-
tion [29,32]. The impurity potential U (r ) is assumed to be
slowly varying in space, and correspondingly, Fnk is concen-
trated near an energy-band extremum (or a valley) at k0. It
follows that the umklapp scattering can be neglected. With
these assumptions, we have

〈ψnk|U |ψn′k′ 〉 ≈ (2π )d/2

Vc

U (k − k′)〈unk|un′k′ 〉cell, (4)

where |unk〉 is the cell-periodic part of |ψnk〉. The subscript
“cell” emphasizes that the integral is to be taken over a
primitive cell.

Consequently, only the matrix elements 〈ψnk|U |ψn′k′ 〉 for
k ≈ k′ ≈ k0 make a significant contribution in Eq. (3). To the
lowest order, 〈unk|un′k′ 〉 ≈ 〈unk0 |un′k0〉 = δnn′ in Eq. (4), as
has been adopted in the traditional effective-mass approxima-
tion [29,32]. However, since the quantity 〈unk|un′k′ 〉 contains
the geometric relation between k and k′, this approximation
amounts to endowing the Brillouin zone, here viewed as a
manifold, with a completely trivial geometry.

Now we expand |unk〉 to second order in δk = k − k0.
It is crucial to keep the expansion up to second order to
retain the geometric effects. As detailed in the Supplemental
Material (SM) [48], with a suitable gauge choice in the

one-band scenario, a new effective-mass equation can be
obtained,

[
εn(−i∇)k0

+ U (r ) − 1
2�n(k0) · ∇U × (−i∇)

+ 1
2gn,αβ (k0)[∂α∂βU (r )]

]
Fn(r ) = EFn(r ), (5)

in which

�n(k0) = i〈∇kun|×|∇kun〉k0
(6)

is the Berry curvature of the Bloch band [42,45],

gn,αβ (k0) = 1
2

(〈
∂kα

un

∣∣Q∣∣∂kβ
un

〉 + α ↔ β
)

k0
(7)

is the quantum metric [43], and Q = 1 − |un〉〈un| is a projec-
tion operator. These quantities reflect the geometric effects of
the Bloch bands and lead to two additional terms to the tradi-
tional effective-mass equation, with which the new effective-
mass equation has a striking resemblance to the nonrelativistic
approximation of the Dirac equation [41]. Remarkably, these
relativisticlike terms correspond respectively to the spin-orbit
coupling and Darwin term. The former can be procured
heuristically by requantization of the effective semiclassical
dynamics, but the latter cannot [49]. The present approach
has consistently stayed quantum mechanical and is systematic
and therefore extensible, and the effective Hamiltonian here
involves only gauge-invariant geometric quantities, i.e., the
Berry curvature and quantum metric.

The physical meaning of the effective spin-orbit cou-
pling (ESOC) in the new effective-mass equation can be
made clearer in a multivalley scenario. Because the impu-
rity potential is assumed to be slowly varying, the inter-
valley coupling—which involves a large crystal momentum
transfer—can be neglected in the lowest-order approxima-
tion. Hence, each valley has an independent effective-mass
equation (5), which differs from each other by the effective
mass, Berry curvature, and quantum metric at the valleys.
Intriguingly, in the ESOC term the role of “spin” is now
played by the valleys, and the strength of the “spin”-orbit cou-
pling is proportional to the magnitude of the Berry curvature.
The appearance of a quantum metric in the new effective-
mass equation reflects in part the anisotropy of the host
lattice.

Having the new effective-mass equation, we now demon-
strate that the ESOC can be exploited to create a 2D topolog-
ical optical superlattice. The host lattice is taken to be a 2D
honeycomb lattice with a staggered A- B sublattice potential
created by the interference of six coplanar laser beams, as
shown by the six pink arrows in Fig. 1. A horizontal trapping
potential is used to confine the atoms to a 2D plane. These
six laser beams can be divided into two groups. Each group
consists of three laser beams with the same frequency and
with a 120◦ angle with each other, generating a triangular
lattice by interference. These six laser beams can be generated
by three laser sources by the use of acousto-optic modulators,
which detune the frequencies between the two groups of laser
beams, so as to avoid interference between the two groups,
and to control the relative strength of VA and VB . Together,
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the six laser fields generate a host lattice potential

V (x, y) = −2VA

{
cos

[
2π

(
x

a
− 1√

3

y

a
− 1

3

)]
+ cos

[
2π

(
x

a
+ 1√

3

y

a
+ 1

3

)]
+ cos

[
2π

(
2√
3

y

a
− 1

3

)]}

− 2VB

{
cos

[
2π

(
x

a
− 1√

3

y

a
+ 1

3

)]
+ cos

[
2π

(
x

a
+ 1√

3

y

a
− 1

3

)]
+ cos

[
2π

(
2√
3

y

a
+ 1

3

)]}
. (8)

The two lines of Eq. (8) are generated by the two groups
of laser beams, respectively. The parameter a is the lattice
constant of this host lattice. Note that if VA = VB , the six
cosines in V (x, y) can be combined into three cosines by
a sum-to-product identity, and hence three laser beams are
enough to generate a honeycomb lattice with inversion sym-
metry [50]. The difference of VA and VB breaks inversion
symmetry, and results in direct band gaps at the hexagonal
Brillouin zone corners K and K ′, where the magnitudes of
Berry curvature are large [48]. For what follows, we will focus
on the conduction-band edges at K and K ′, which are referred
to as valleys.

We begin by applying Eq. (5) to analyze the energy levels
in the single “impurity” limit, for the two valleys k0 = K,K ′.
Consider that a large-scale trapping potential U (r ) is imposed
on the host lattice playing the role of an “impurity” potential.
Assuming that the trapping potential U (r ) in Eq. (5) has
2D rotational symmetry, the solutions can be classified by
their angular momenta Lz = lh̄, where l is the azimuthal
quantum number. For the 2D honeycomb host lattice, the
Berry curvature � has the same magnitude and opposite
signs at K and K ′ [48], while the quantum metric g is the
same for both valleys. Hence, the ESOC leads to splitting
of the otherwise degenerate states with Lz = ±lh̄, l 
= 0.
The lowest-energy states are two “1s” states originating from
the two valleys with vanishing angular momenta. Neither the

FIG. 1. A proposed experimental setup for the generation of
potential V (r ) + U (r ) by an optical lattice. The colored arrows
indicate nine laser beams, which can be obtained by three laser
sources. Six of them (pink) lie in the same plane, generating the
“host lattice,” and the other three lasers (green) point obliquely from
out of the plane, generating the “impurity” superlattice. A horizontal
trapping potential is used to make the optical lattice two dimensional.

ESOC nor the effective Darwin term can lift the degeneracy
of the two 1s states. In the absence of intervalley scattering,
the two 1s states of K and K ′ valleys are degenerate, and we
can treat them as the two spin projections, |↑〉 and |↓〉, of a
“pseudospin”-1/2.

Then we analyze the case when a large-scale 2D honey-
comb superlattice, which can be viewed as a periodic array of
the above-mentioned trapping potentials, is superimposed on
the host lattice. The total large-scale potential U (r ) [Fig. 2(a)]
is no longer fully rotational symmetric, but reduced to the
symmetry of a honeycomb superlattice. Because of the hop-
pings among the trapping sites, the “impurity levels” become
dispersive minibands. With the two 1s states |↑〉 and |↓〉 on
each trapping site as the basis, a tight-binding (TB) Hamilto-
nian for the large-scale honeycomb superlattice can be built,

H = �
∑
iμ

αic
†
iμciμ − t

∑
〈ij〉μ

c
†
iμcjμ

+ i

3
√

3

∑
〈〈ij〉〉μμ′

(λ + αiξ )νij c
†
iμ(sz)μμ′cjμ′ , (9)

in which c
†
iμ creates a particle with pseudospin μ on trapping

site i, and αi = +1/ − 1 for trapping site i lies on the A/B

sublattice. 2� is the on-site energy difference of the two
sublattice originating from the inversion symmetry breaking
of the host lattice. The hopping matrix element of the nearest
neighbors 〈ij 〉 is denoted as t , and (λ ± ξ ) corresponds to the
matrix elements of the ESOC between next-nearest neighbors
〈〈ij 〉〉 on the A sublattice (+) or B sublattice (−), with the

FIG. 2. (a) Schematic of the optical superlattice with potential
V (x, y ) + U (x, y ). A supercell is indicated by the red hexagon. The
small dark blue points are the positions of the valleys of the host
lattice potential V (x, y ), and the small yellow points are the positions
of the peaks of V (x, y ); so are the large dark blue and yellow
areas to the large-scale potential U (x, y ). (b) Four minibands (red)
are formed in the band gap of the host lattice. The orange regions
correspond to the areas occupied by bulk bands of the host lattice.
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difference 2ξ originating from the inversion symmetry break-
ing. νij = +1 if the direction of j → i is counterclockwise
inside a hexagon of the honeycomb superlattice and −1 if
clockwise, and sz is the z Pauli matrix for ↑ and ↓. The
Hamiltonian (9) is a generalization of the Kane-Mele quantum
spin Hall model [51] to the case of inversion symmetry
breaking. The Hamiltonian becomes decoupled in the k̄ space
of the superlattice, H = ∑

k̄ d†(k̄)h(k̄)d(k̄), where d(k̄) =
[cAk̄↑, cAk̄↓, cB k̄↑, cB k̄↓]T . We use an overbar in k̄ to indicate
that the wave vector is associated with the superlattice. At the
superlattice Brillouin zone corners k̄ = τz( 4π

3ā
, 0), with ā the

superlattice constant and τz = ±1,

h(k̄) = �σz + λσzτzsz + ξτzsz, (10)

in which σz = +1 for the A sublattice or −1 for the B

sublattice. The pseudospin is a good quantum number because
[sz,H ] = 0. By analogy to the spin Chern number character-
izing a quantum spin Hall system [51], a pseudospin Chern
number can be defined for the optical superlattice as

Cs = 1
2 (C↑ − C↓), (11)

in which C↑ and C↓ are the Chern numbers of the ↑ and
↓ pseudospin branches of the eigenstates, respectively. It is
evident from Eq. (10) that the band gaps close at K̄ or K̄ ′ of
the superlattice Brillouin zone when |�| = |λ|. For |�| > |λ|,
the pseudospin Chern number is 0, and for |λ| > |�| the
pseudospin Chern number is ±1. This means that the presence
of the ESOC term in the effective-mass equation (5) is able to
drive a topological phase transition of the optical superlattice.

A concrete example of the ESOC-induced topological
phase is now provided by numerically solving the above-
mentioned superlattice, whose effective-mass theory can be
furnished by Eq. (9). The large-scale potential U (x, y) which
plays the role of the “impurity” potential in the higher-order
effective-mass equation (5) is chosen as

U (x, y) = 2VI

{
cos

[
2π

(
x

A
− 1√

3

y

A

)]

+ cos

[
2π

(
x

A
+ 1√

3

y

A

)]
+ cos

(
4π√

3

y

A

)}
.

(12)

This is a honeycomb lattice potential with the lattice constant
A. Three additional laser beams can be introduced to create
the large-scale potential (12), as schematically shown by the
three green arrows in Fig. 1. They are coming in with angles
of incidence θ with respect to the plane of the host lattice.
These three laser beams can also be shunted from the three
laser sources which generate the host lattice, using acousto-
optic modulators and mirrors. Then the relation between the
lattice constants A and a is

A = a/ sin θ. (13)

In numerical calculations, we use a as the length unit, bare
mass m of the atom as the mass unit, and h̄2/ma2 as the
energy unit, i.e., we set h̄ = m = a = 1. Other parameters
are chosen as VA = 20.0, VB = 20.2, VI = 0.25, and A = 12.
The lattice constant A = 12 can be realized by choosing the
incident angle θ = 4.78◦. The superlattice is schematically

FIG. 3. (a)–(d) Spatial distributions of the particle densities
|�n̄K̄ (r )|2 of the four miniband states at the K̄ point of the su-
perlattice Brillouin zone, in ascending order of energy. The black
lines indicate the honeycomb superlattice. (e)–(h) Distributions of
|Fn̄k|2 = |〈ψck|�n̄K̄〉|2 of the four miniband states at the K̄ point, in
ascending order of energy. The parallelograms are primitive cells of
the reciprocal of the host lattice.

shown in Fig. 2(a). The Hamiltonian is expanded in a plane-
wave basis set. The cutoff of the wave vectors is 38|b̄1| and
38|b̄2| for the two dimensions, respectively, with b̄1 and b̄2

denoting the primitive vectors of the reciprocal lattice of the
superlattice.

As expected, four minibands are found in the band gap
of the host lattice as shown in Fig. 2(b), originating from
the two 1s states of the A and B sublattice: |A ↑〉, |A ↓〉,
|B ↑〉, and |B ↓〉. To determine the topological nature of the
minibands, let us first investigate the components of the four
states at the K̄ point of the superlattice Brillouin zone, which
reflects the relative magnitudes of |�| and |λ| in Eq. (10).
The spatial distributions of the particle densities |�n̄K̄ (r )|2 of
the four miniband states n̄ = 1–4 are calculated and shown
in Figs. 3(a)–3(d). It can be seen that the particle density is
localized near the trapping sites of U (r ), confirming that the
minibands are indeed derived from bound states of the trap-
ping sites. The distributions of the projection squared of the
miniband states at K̄ onto the Bloch states of the host lattice
|Fn̄k|2 = |〈ψck|�n̄K̄〉|2, n̄ = 1–4 are shown in Figs. 3(e)–3(h).
We have checked that these four states are constructed almost
entirely from the Bloch states |ψck〉 of the conduction band
of the host lattice. The distributions of |Fn̄k|2 are mostly
concentrated near the two valleys at K and K ′ of the host
lattice Brillouin zone, which validates the assumptions on
which the effective-mass theory is based.

From Fig. 3 the components of the four impurity states
at K̄ can be readily seen, and it is found that |A ↑〉 >

|B ↓〉 > |B↑〉 > |A ↓〉 by their energy. Then the order of the
magnitudes of parameters in the Hamiltonian (10) can be
determined, namely, −ξ < � < ξ < λ. This set of parameters
indicates that the impurity superlattice lies in a topologically
nontrivial regime. Calculations of the TB band structures
can be found in the SM [48]. The TB parameters lying in
the topologically nontrivial regime reasonably reproduce the
minibands, which indicates that the generalized Kane-Mele
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FIG. 4. (a) The strip model for calculation of edge states. (b)
Band structure of the strip model. The gapless edge states are
highlighted by red and blue lines.

model (9) is indeed reliable for the description of the mini-
bands.

The topological nature of the optical superlattice indicates
the existence of topologically protected edge states, which we
now confirm. We build a strip model in which the superlattice
potential U (r ) is truncated to four periods of the armchair
direction and put on top of the host lattice potential V (r ),
as shown in Fig. 4(a). Plane-wave expansion is used to solve
this strip model. The band structure near the energy window
of the minibands is shown in Fig. 4(b). The gapless edge
states as marked by red and blue lines can be readily seen.
We have checked that the two pairs of states at k = π are
indeed lying on the two edges of the strip [48]. The existence
of the gapless edge states provides concrete evidence of the
topological nature of the minibands, and validates the new
effective-mass equation on which the generalized Kane-Mele
model is built.

In the approach to creating SOC in an optical superlattice
proposed above, a remarkable point is that the minibands only
experience the influence of the host lattice via the effective
mass, Berry curvature, and quantum metric at the valleys. All
high-energy degrees of freedom are out of the picture. This is
particularly advantageous, as it is clear from the new effective-
mass equation (5) that the relative position, orientation, and
commensuration between the host and superlattices need not
be precisely controlled to procure the geometric effects of
the host lattice. Thus, the proposed approach is flexible. For
example, Tarruell et al. [52] demonstrated experimentally that
anisotropic massive Dirac cone dispersion can be created on
an inversion symmetry-broken honeycomb lattice. Although
anisotropic, this provides an equally ideal experimental host
lattice for realizing the geometry-driven SOC and topological
phase.

Putting the current effective-mass equation in a more gen-
eral context, a richer variety of SOC effects can be achieved.
For example, spins larger than 1/2 can be simulated on a
host lattice with more than two valleys, and 3D SOC can
be generated by a suitably constructed 3D host lattice. The
effective SOC in this work does not flip spins. To generate a
spin-flipping effective SOC, one may consider constructing a
host lattice whose energy valley(s) consists of two or more
degenerate bands acting as spins. Then the Berry curvature in
the new effective-mass equation (5) is non-Abelian [45,49],
and its nonzero off-diagonal matrix elements can flip the
spins.

In summary, the geometric effects of Bloch bands have
a highly nontrivial manifestation in the quantum states and
spectrum, in the presence of a perturbation breaking discrete
translational symmetry. In comparison with the traditional
effective-mass equation, the geometric effects lead to two
relativisticlike terms in the Hamiltonian, namely, the effective
SOC and effective Darwin term. The new equation provides
a different perspective for understanding and tailoring wave-
mechanical states associated with imperfections of a host
lattice, which can be any spatially periodic system including
crystals, optical lattices, artificial superstructures, and so on.
As an example, we demonstrate that the effective SOC can
be exploited to induce nontrivial topology in an optical su-
perlattice. This artificial SOC on cold atoms comes from the
geometry of the band structure of the optical host lattice, and
does not involve the internal structure of the atoms. Hence,
this scheme has a broad applicability on various kinds of
atoms, and avoids the heating or atom loss problem from
spontaneous emission. The new effective-mass approximation
can also be applied to other artificial superlattices, which
is demonstrated in detail in the SM [48]. The formalism
developed herein may also be profitably extended to photonic
crystals, which are governed by the Maxwell equations.
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